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Abstract
Herlihy and Koskinen’s transactional boosting methodol-
ogy addressed the challenge of converting concurrent data
structures into transactional ones. We present an optimistic
methodology for boosting concurrent collections. Optimistic
boosting allows greater data structure-specific optimiza-
tions, easier integration with STM frameworks, and lower re-
strictions on the boosted operations than the original boost-
ing methodology.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming – Parallel Program-
ming; E.1 [Data Structures]: Concurrent Data Structures

Keywords STM, Transactional Boosting, Transactional
Data Structures

1. Introduction
Concurrent collections of elements [3] are well optimized
for preserving isolation of concurrent operations, but they
do not support transactional accesses to objects. Software
Transactional Memory (STM) [4] is increasingly becom-
ing a promising technology for designing and implement-
ing concurrent applications. STM can be trivially used for
implementing transactional data structures and collections.
However, the performance of STM-based transactional col-
lections is significantly lower than their optimized, concur-
rent (non-transactional) counterparts.

As an alternative to using STM, Herlihy and Koskinen in-
troduced the technique of Transactional Boosting [2], which
converts concurrent data structures to transactional ones by
providing a semantic layer of abstract locks on top of con-
current objects. However, it has some downsides. First, ab-
stract lock acquisition and modifications in memory are ea-
ger. This does not natively provide opacity [1] at memory
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level and contradicts with the methodology of most STM
algorithms, which makes the integration between “boosted”
data structures and any STM framework difficult. Second,
the technique uses the underlying concurrent data structure
as a black box, which prevents further optimizations. Finally,
the methodology requires defining an inverse for each opera-
tion, which is not necessarily supported in all data structures.

Motivated by these observations, we present Optimistic
Transactional Boosting (or OTB), an optimistic methodol-
ogy for converting concurrent data structures into transac-
tional ones. In OTB, transactional operations do not ea-
gerly acquire the semantic locks and modify the shared data
structure. Instead, they populate their changes in local logs
during their execution, defering any physical modifications
to commit time. This way, OTB combines the benefits of
lazy concurrent data structures (i.e., un-monitored traver-
sals), boosting (i.e., semantic validation), and transactional
memory (i.e., optimistic concurrency control).

OTB gains significant advantages over Herlihy and Kosk-
inen’s boosting, which we call “pessimistic” boosting here-
after due to its pessimistic behavior on lock acquisition.
First, it avoids the need for defining inverse operations. Sec-
ond, it uses the concepts of validation, commit, and abort in
the same way as general (optimistic) STM algorithms, but at
the semantic layer, which enables easy integration with STM
frameworks. Finally, it uses highly concurrent collections as
white boxes (rather than black boxes as in pessimistic boost-
ing) for designing new transactional versions of each concur-
rent (non-transactional) data structure, which allows more
data structure-specific optimizations.

2. OTB Methodology
Each operation in OTB is divided into three steps:

Traversal. This step scans the objects and computes what
the operation’s results should be (its postcondition), and
what it depends on (its precondition). This raises the need
to define (in each transaction), what we call, semantic read-
set and semantic write-set, which store these information.

Validation. This step checks the validity of precondi-
tions. Specifically, the entities stored in the semantic read-set
are validated in this step. The step is repeated after each new
read (to guarantee opacity), and at commit time.



Commit. This step performs the modifications to the
shared data structure. The step is not done at the end of each
operation, but is deferred to commit time. All information
needed for performing this step are maintained in the seman-
tic write-sets during the first step (i.e., traversal). To publish
write-sets, classical two-phase locking is used (but at the se-
mantic layer). This semantic (or abstract) locking prevents
semantic conflicts at commit.

Unlike the classical meaning of read-sets and write-sets
in STM, not all memory reads and writes are saved in the se-
mantic read-sets and write-sets. Instead, only those reads and
writes that affect linearization of the object and consistency
of the transaction are saved. This avoids false conflicts – i.e.,
concurrent operations that conflict at the memory level but
are independent at the semantic level; thus, they do not re-
quire any abort, which degrades the performance of several
STM-based data structures.

Figure 1. Execution flow of: concurrent (lock-based or
lock-free) data structures; pessimistic boosting; OTB.

Figure 1 shows the execution flow of: concurrent (lazy)
data structures, pessimistic boosting, and OTB.

Concurrent (non-transactional) data structures yield high
performance because they traverse the data structure without
instrumentation, and they only acquire locks (or use CAS
operations in case of lock-free objects) at late phases.

To add transactional capabilities, pessimistic boosting ac-
quires semantic locks eagerly, and saves the inverse opera-
tions in an undo-log (to rollback the transaction in case of
abort). Then, it uses the underlying concurrent data struc-
ture as a black box without any modifications. (In both pes-
simistic boosting and OTB, dark blocks in Figure 1 are the
same as the concurrent versions, while white blocks are
added/modified.) At commit time, the only task to be accom-
plished is the release of semantic locks, because operations
have already been executed eagerly.

In contrast to pessimistic boosting, OTB acquires seman-
tic locks lazily, and uses the underlying data structure as a
white box. Similar to concurrent data structures, OTB tra-
verses objects without instrumentation. However, it differs
from them in three aspects: i) lock acquisition and actual

writes are shifted to commit time; ii) the validation proce-
dure is modified to satisfy the new transactional require-
ments; and iii) the necessary information is saved in local
semantic read-sets and write-sets.

Thus, OTB gains the following benefits over pessimistic
boosting. First, it does not require well defined commuta-
tivity rules or inverse operations. Second, integration with
STM frameworks is easy, as OTB uses the same phases of
validation and commit (with the same meaning as in STM).
Third, it uses highly concurrent collections as white boxes to
design new transactional versions of each concurrent (non-
transactional) data structure. This allows greater optimiza-
tions according to the new transactional features, with mini-
mal re-engineering overhead.

3. Example: OTB Set
Following the steps in Section 2, applying optimistic boost-
ing on lazy linked list-based set [3] is straightforward. We
briefly explain the guidelines for applying the three steps of
optimistic boosting on set.

Traversal. Any operation (add, remove, or contains) on
an item X traverses the list without instrumentation until it
reaches the involved nodes. As in a lazy set, two nodes are
involved in each operation: pred, the largest node lower than
X; and curr, the successor of pred. These nodes are saved in
the read-set (and the write-set if the operation is a successful
add/remove operation). To cover the read-after-write hazard,
the write-set is scanned before the list traversal.

Validation. List is validated in a similar way as its con-
current version [3]. The validity of pred and curr is checked:
they should not have been deleted, and the reference of pred
should point to curr. The only difference is that the entire
read-set must be post-validated after each operation, and not
just the current operation’s nodes (to guarantee opacity).

Commit. Semantic locks on all pred and curr nodes in
the write-set are acquired. Then, read-set is validated again,
and the write-set is published. Finally, locks are released.
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