
On Developing Optimistic Transactional Lazy
Set

[Technical Report]

Ahmed Hassan, Roberto Palmieri, Binoy Ravindran

Virginia Tech
{hassan84;robertop;binoy}@vt.edu

Abstract. Transactional data structures with the same performance of
highly concurrent data structures enable performance-competitive trans-
actional applications. Although Software Transactional Memory (STM)
is a promising technology for designing and implementing transactional
applications, STM-based transactional data structures still perform infe-
rior to their optimized, concurrent (i.e. non-transactional) counterparts.
In this paper, we present OTB-Set, an efficient optimistic transactional
lazy set based on both linked-list and skip-list implementations. We
first provide general guidelines to show how to design a transactional
(non-optimized) version of the highly concurrent lazy set with a minimal
reengineering effort. Subsequently, we show how to make specific opti-
mizations to the implementations of the OTB-Set for further enhancing
its performance. We also prove that our OTB-Set provides linearizable
individual operations and opaque transactions. Our experimental study
on a 64-core machine reveals that OTB-Set outperforms competitors in
most workloads.

Keywords: Software Transactional Memory, Semantic, Set Data Struc-
ture, Boosting

1 Introduction

The increasing ubiquity of multi-core processors motivates the development of
data structures that can exploit the hardware parallelism of those processors.
The current widely used concurrent collections of elements (e.g., Linked-List,
Skip-List, Tree) are well optimized for high performance and ensure isolation
of atomic operations, but they do not compose. This is a significant limitation
from a programmability standpoint, especially for legacy systems as they are
increasingly migrated onto multicore hardware (for high performance) and must
seamlessly integrate with third-party libraries.

Software transactional memory (STM) [20] can be used to implement trans-
actional data structures (e.g., [7,12]), which makes them composable – a signif-
icant benefit. However, monitoring all of the memory locations accessed by a



transaction while executing data structure operations is a significant (and often
unnecessary) overhead. As a result, STM-based transactional collections perform
inferior to their optimized, concurrent (i.e. non-transactional) counterparts.

As an alternative to STM, the transactional boosting methodology was in-
troduced in [14] and further investigated in [11], to convert the highly concurrent
data structures into transactional ones. Briefly, in [14], semantic locks are pes-
simistically acquired at early phases of the transaction to reduce false conflicts.
For this reason, and following the trend in [11], we name this approach as pes-
simistic transactional boosting (or PTB). In contrast, the work in [11] lazily
acquires the semantic locks, which motivates the name optimistic transactional
boosting (or OTB). In both approaches, operations are saved in either semantic
undo logs (in PTB) or semantic redo logs (in OTB) to correctly commit/abort
transactions. As discussed in [11], OTB has benefits over PTB. First, OTB does
not require defining inverse operations. Second, it uses the same phases of valida-
tion and commit, with the same semantics, as in STM systems, allowing an easy
integration of OTB data structures with STM frameworks. Finally, it uses the
underlying data structure as a white box, which allows further data structure-
specific optimizations. Inspired by the general OTB’s principles, in this paper
we focus on set-based data structures providing an efficient transactional lazy
set (called OTB-Set hereafter), which boosts the highly concurrent lazy set de-
scribed in [13]. OTB-Set offers the implementation of linked-list and skip-list.

We split the design of OTB-Set into two phases. The first phase consists of: i)
dividing each operation of the original lazy concurrent data structure into three
steps (traversal, validation, and commit); ii) deferring the commit step to the
end of the transaction; iii) modifying the validation step to guarantee opacity [9]
rather than linearizability [17]. This phase is general and does not make any data
structure-specific optimization as it provides guidelines independent from the
actual implementation of the set. These optimizations are taken into account in
the second phase, where we modify the previous OTB-Set design (i.e., the result
of phase one) with the aim of further enhancing its performance. Here, we apply
optimizations related to the implementation of the data structure rather than its
semantic. Splitting the design in such a way allows the programmer to follow the
same pattern for boosting more lazy data structures by first designing a general
“non-optimized” transactional version using well-defined guidelines (phase one),
and then adding optimizations to the specific data structure implementation,
resulting in an “optimized”, more performant, version (phase two).

We acknowledge that using concurrent data structures as “black boxes”,
as proposed by PTB, saves the effort for re-engineering them as transactional,
however through OTB-Set we show that following our general guidelines it is
not difficult to develop a transactional version of lazy set-based data structures,
still retaining the advantage of enabling data structure specific optimizations.

We prove that OTB-Set (both the non-optimized and the optimized) provides
individual linearizable operations and opaque transactions. To evaluate OTB-Set
we compared its performance with both PTB [14] and lazy [13] sets. Our results
show that OTB-Set’s performance is closer to the highly concurrent lazy set



than PTB set in most cases. Beyond the performance improvement, OTB-Set
has an added benefit: it is easy to integrate with lazy STM frameworks without
violating their correctness or progress guarantees. This way, as we showed in [10],
programmer can execute transactions with mixed access types, namely classical
memory accesses (managed by the STM framework) and data structure accesses
(managed by OTB-Set), without suffering from the disadvantages (i.e., false-
conflict) of using an STM on top of a data structure as explained above.

The PTB and OTB approaches take an orthogonal direction to other works
in literature for allowing semantic conflict detection. Techniques like open nest-
ing [18], elastic transactions [8], transactional collection classes [4], and trans-
actional predication [3] are different alternatives to design transactional data
structures by using STM frameworks more efficiently than the naive STM-based
data structures’ implementation. The distinguishing point in both PTB and
OTB is that they are completely independent and decoupled from STM frame-
works1, and they focus more on digging into the design and the implementation
of the highly concurrent data structures and optimize the specific implementa-
tion of each one of them. Along the same line of OTB, techniques like COP [1,2]
and ParT [21] exploit the same idea of splitting data structures’ operations
into an unmonitored traversal phase and a speculated validation/update phase.
While COP operations are only concurrent (non-transactional), which do not na-
tively compose and cannot be integrated with traditional memory frameworks,
ParT discusses how to compose operations by employing a set of validators. In
this paper, OTB proposes more reliance on the semantics of the data structure
(especially in the “optimized” versions), and provides more details on how to
compose dependent operations. Despite their differences, the above trials, along
with OTB, confirm the trend of moving towards more optimistic approaches for
semantic validation.

Our lazy set is publicly available as JAVA library at http://www.hyflow.

org/software.html.

2 Optimistic Transactional Boosting

Optimistic transactional boosting (OTB) [11] is a methodology to boost lazy
data structures to be transactional. A common feature that can be identified in
all lazy data structures is that they have an unmonitored traversal step, in which
the object’s nodes are not kept locked until the operation ends. To guarantee
consistency, this unmonitored traversal is followed by a validation step before the
last step that physically modifies the shared data structure. As described in [11],
OTB modifies the design of these lazy data structures to support transactions.
Basically, the OTB methodology can be summarized in three main guidelines.
(G1) Each data structure operation is divided into three steps. Traversal . This

step scans the objects, and computes the operation’s results (i.e., its post-
condition) and what it depends on (i.e., its precondition). This requires us

1 In fact, OTB does not use STMs, rather it has been designed to be easily integrated
with existing STM frameworks.

http://www.hyflow.org/software.html
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to define (in each transaction), what we call semantic read-set and seman-
tic write-set, which store these information (semantic write-sets can also be
called semantic redo-logs). Validation. This step checks the validity of the
preconditions. Specifically, the entities stored in the semantic read-set are
validated to ensure that operations are consistent. Commit . This step per-
forms the modifications to the shared data structure. Unlike concurrent data
structures, this step is not done at the end of each operation. Instead, it is
deferred to the transaction’s commit time. All information needed for per-
forming this step are maintained in the semantic write-sets during the first
step (i.e., traversal). To publish the write-sets, a classical (semantic) two-
phase locking is used. This semantic (or abstract) locking prevents semantic
conflicts at commit.

(G2) Data structure design is adapted to support opacity. The correctness of
transactional data structures does not only depend on the linearization of
its operations (like concurrent data structures), but it also depends on the
sequence of the operations executed in each transaction. Data structure de-
sign has to be adapted to guarantee this serialization part. OTB provides
the following guidelines, which exploit the local read-sets and write-sets
to guarantee opacity [9] 2 , the same consistency level of most STM al-
gorithms [5,6,19,15]:
(G2.1) Each operation scans the local write-set first, before accessing the

shared object. This is important to include the effect of the earlier (not
yet published) operations in the same transaction.

(G2.2) The read-set is re-validated after each operation and during commit,
to guarantee that each transaction always observes a consistent state of
the system (even if it will eventually abort).

(G2.3) During commit, semantic locks of all operations are acquired before
any physical modification on the shared data structure.

(G2.4) Operations are applied during the commit phase in the same order as
they appeared in the transaction and, in case the outcome of an operation
influences the subsequent operations recorded in the write-set, they are
updated accordingly.

(G2.5) All operations have to be validated, even if the original (concurrent)
operation does not make any validation (like contains operation in set).
The goal of validation in these cases is to ensure that the same operation’s
result occurs at commit.

(G3) Data structure design is adapted for more optimizations. Each data struc-
ture can be further optimized according to its own semantic and implemen-
tation. For example, in set, if an item is added and then deleted in the same
transaction, both operations eliminate each other and can be completed
without physically modifying the shared data structure.

Unlike the first two guidelines, which are general for any lazy data structure,
the third guideline varies from one data structure to another. It gives a hint to the
developers that the data structures now are no longer used as black boxes, and

2 In section 4, we prove that those guidelines are sufficient to guarantee opacity.



further optimizations can be applied. It is important to note that the generality
of the first two guidelines does not mean that they can be applied “blindly”
without being aware of the data structure’s semantics. OTB, like the former
techniques (including PTB) [1,2,21,14], performs better than the naive STM-
based data structures only because it exploits semantics. However, we believe
that OTB’s guidelines make a clear separation between the general outline that
can be applied on any lazy data structure (like validation, in G2.2, and commit,
in G2.4, even if the validation/commit mechanisms themselves vary from one
data structure to another) and the specific optimizations that are completely
dependent on the data structures implementation.

In Section 3, we show in detail how those guidelines can be used to design
OTB-Set, an efficient transactional set based on both linked-list and skip-list. In
Section 3.2, we follow the first two guidelines to design a non-optimized trans-
actional version of the lazy set. Then, in Section 3.3, we show how specific
optimizations can be applied on our OTB-Set (according to the third guideline).

3 OTB-Set

3.1 Preliminaries

Set is a collection of ordered items, which has three basic operations: add,
remove, and contains, with the familiar meanings [16]. No duplicate items are
allowed (thus, add returns false if the item is already present in the structure).
All operations on different items of the set are commutative – i.e., two opera-
tions add(x) and add(y) are commutative if x 6= y. Moreover, two contains

operations on the same item are commutative as well. Such a high degree of com-
mutativity between operations enables fine-grained semantic synchronization.

Lazy linked-list [13] is an efficient implementation of concurrent (non trans-
actional) set. For write operations, the list is traversed without any locking until
the involved nodes are locked. If those nodes are still valid after locking, the
write takes place and then the nodes are unlocked. A marked flag is added to
each node for splitting the deletion phase into two steps: the logical deletion
phase, which simply sets the flag to indicate that the node has been deleted,
and the physical deletion phase, which changes the references to skip the deleted
node. This flag prevents traversing a chain of deleted nodes and returning an
incorrect result. It is important to note that the contains operation in the lazy
linked-list is wait-free and is not blocked by any other operation.

Lazy skip-list is, in general, more efficient than linked-list as it takes log-
arithmic time to traverse the set. In skip-list, each node is linked to multiple
lists (i.e., levels), starting from the list at the bottom level (which contains all
the items), up to a random level. Therefore, add and remove operations lock an
array of pred and curr node pairs (in a unified ascending order of levels to avoid
deadlock), instead of locking one pair of nodes as in linked-list. For add opera-
tion, each node is enriched with a fullyLinked flag to logically add it to the set
after all levels have been successfully linked. Skip-list is also more suited than



linked-list in scenarios where the overhead of rolling back (compared to execu-
tion) is dominating. In fact, for a linked-list (and especially a long linked-list),
even if aborts are rare, their effect includes re-traversing the whole list again,
in a linear time, to retry the operation. In a skip-list, the cost of re-traversal
is lower (typically in a logarithmic time), which minimizes the overhead of the
aborts.

The implementation of the PTB version of the set is straightforward and
does not change if the set implementation itself changes. In fact, it uses the
underlying concurrent lazy linked-list (or skip-list) to execute the set operations.
If the transaction aborts, a successful add operation is rolled back by calling the
remove operation on the same item, and vice versa (more details are in [14]).

Despite the significant improvement in the traversal cost and abort overhead,
the implementation of OTB skip-list and OTB linked-list are very similar. Due
to space constraints, and with the purpose of making the presentation clear, we
focus on the linked-list implementation, and we highlight the main differences
with respect to the skip-list implementation when necessary (the full implemen-
tation details of both linked-list-based and skip-list-based OTB-Set can be found
in the source code).

3.2 Non-Optimized OTB-Set

Following the first two guidelines (G1 and G2 ) mentioned in Section 2, in this
section we show how to boost the lazy set to design a transactional set without
any specific optimization related to the details of its implementation. According
to G1, we divide OTB-Set operations into three steps. The Traversal step is
used to reach the involved nodes, without any addition to the semantic read-
set. The Validation step is used to guarantee the consistency of the transaction
and the linearization of the list. We define two different validation procedures:
one is named post-validation, which is called after each operation, and the other
is named commit-time-validation, which is called at commit time and after ac-
quiring the semantic locks. The Commit step, which modifies the shared list, is
deferred to transaction’s commit. Following G2, we show how the usage of lazy
updates, semantic locking, and post-validation guarantees opacity.

Similar to the lazy linked-list, each operation in OTB-Set involves two nodes
at commit time: pred, which is the largest item less than the searched item,
and curr, which is the searched item itself or the smallest item larger than the
searched item3. To log the information about these nodes, with the purpose of
using them at commit time, we adopt the same concept of read-set and write-
set as used in lazy STM algorithm (e.g., [5,6]), but at the semantic level. In
particular, each read-set or write-set entry contains the two involved nodes in
the operation and the type of the operation. In addition, the write-set entry
contains also the new value to be added in case of a successful add operation.

3 Sentinel nodes are added as the head and tail of the list to handle special cases.



The only difference in skip-list is that the read-set and write-set entries con-
tain an array of pred and curr pairs, instead of a single pair. This is because the
searched object can be in more than one level of the skip-list.

Algorithm 1 OTB Linked-list: add, remove, and contains operations.

1: procedure Operation(x)
. Step 1: search local write-sets

2: if x ∈ write-set then
3: ret = write-set.get-ret(op,x)
4: if op is add or remove then
5: write-set.append(op,x)

6: return ret
. Step 2: Traversal

7: pred = head and curr = head.next
8: while curr.item < x do
9: pred = curr

10: curr = curr.next
. Step 3: Save reads and writes

11: rse = new ReadSetEntry(pred,curr,op)
12: read-set.add(rse)
13: if op is add or remove then
14: wse = new WriteSetEntry(pred,curr,op,x)
15: write-set.add(wse)

. Step 4: Post Validation
16: if ¬ post-validate(read-set) then
17: ABORT
18: else if Successful operation then
19: return true
20: else
21: return false

22: end procedure

Algorithm 1 shows the pseudo code of the linked-list operations. We can iso-
late the following four parts of each operation.
Local writes check (lines 2-6). Since writes are buffered and deferred to the com-
mit phase, this step guarantees consistency of further reads and writes. Each
operation on an item x checks the last operation in the write-set on the same
item x and returns the corresponding result. For example, if a transaction pre-
viously executed a successful add operation of item x, then further additions of
x performed by the same transaction must be unsuccessful and return false. In
addition, if the new operation is a writing (i.e., add/remove) operation, it should
be appended to the corresponding write-set entry (line 5). If there is no previous
(local) operation on x in the write-set, then the operation starts traversing the
shared linked-list as shown in the next step.
Traversal (lines 7-10). This step is the same as in the lazy linked-list. It saves the
overhead of all unnecessary monitoring during traversal that, otherwise, would
be incurred with a native STM algorithm for managing concurrency.
Logging the reads and writes (lines 12-15). At this point, the transaction records
the accessed nodes, that are semantically relevant to the set, into its local read-
set and write-set. All operations must add the appropriate read-set entry, while
add/remove operations modify also the write-set (line 15). It is worth to note
that having no entries in the write-set for contains operation means that it
does not need to acquire locks during the commit phase. This way, although the
contains operation is no longer wait-free, like its concurrent lazy version (be-
cause it may fail during the commit-time-validation), it still performs efficiently
due to the absence of the semantic locks acquisition. We recall that, rather than
OTB, PTB has to acquire semantic locks even for the contains operation to
maintain consistency and opacity.
Post-Validation (lines 16-21). At the end of the traversal step, the involved nodes



are stored in local variables (i.e., pred and curr). At this point, according to point
G2.2 and to preserve opacity [9], the read-set is post-validated to ensure that the
transaction does not observe an inconsistent snapshot. The same post-validation
mechanism is used at memory-level by STM algorithms such as NOrec [5]. More
details about post-validation are discussed later in Algorithm 2.

As mentioned before, there is a difference between linked-list and skip-list
regarding the add operation. In fact, in the skip-list the new node has to be
linked to multiple levels, thus there could be a time window where the new node
is only linked to some (and not all) levels. To handle this case in our OTB-Set,
any concurrent operation waits until the fullyLinked flag becomes true, and
then it proceeds.

Algorithm 2 shows the post-validation step. The validation of each read-set
entry is similar to the one in lazy linked-list: both pred and curr should not be
deleted, and pred should still link to curr (lines 6-8). According to G2.5 of OTB
guidelines, contains operation has to perform the same validation as add and
remove, although it is not needed in the concurrent version. This is because any
modification made by other transactions after invoking the contains operation
and before committing the transaction may invalidate the returned value of the
operation, making the transaction’s execution semantically incorrect.

To enforce isolation, a transaction ensures that its accessed nodes are not
locked by another writing transaction during validation. This is achieved by
implementing locks as sequence locks (i.e., locks with version numbers). Before
the validation, a transaction records the versions of the locks if they are not
acquired. If some are already locked by another transaction, the validation fails.
(lines 2-5). After the validation, the transaction ensures that the actual locks’
versions match the previously recorded versions (lines 9-12).

Algorithm 2 OTB Linked-list: validation.

1: procedure Validate(read-set)
2: for all entries in read-sets do
3: get snapshot of involved locks
4: if one involved lock is locked then
5: return false
6: for all entries in read-sets do
7: if pred.deleted or curr.deleted or

pred.next 6= curr then

8: return false
9: for all entries in read-sets do

10: check snapshot of involved locks
11: if version of one involved lock is

changed then
12: return false
13: return true

14: end procedure

Algorithm 3 shows the commit step of OTB-Set. Read-only transactions have
nothing to do during commit (line 2), because of the incremental validation
during the execution of the transaction. For write transactions, according to
point G2.3, the appropriate locks are first acquired using CAS operations (lines
4-6). Like the original lazy linked-list, any add operation only needs to lock
pred, while remove operations lock both pred and curr. As described in [13],
this is enough for preserving the correctness of the write operations. To avoid



deadlock, any failure during the lock acquisition implies aborting and retrying
the transaction (releasing all previously acquired locks).

After the semantic lock acquisition, the validation is called, in the same way
as in Algorithm 2, to ensure that the read-set is still consistent (line 7). If the
commit-time-validation fails, then the transaction aborts.

Algorithm 3 OTB Linked-list: commit.

1: procedure Commit
2: if write-set.isEmpty then
3: return
4: for all entries in write-sets do
5: if CAS Locking pred (or curr if re-

move) failed then
6: ABORT
7: if ¬ commit-validate(read-set) then
8: ABORT
9: sort write-set descending on items

10: for all entries in write-sets do
11: curr = pred.next
12: while curr.item < x do
13: pred = curr
14: curr = curr.next
15: if operation = add then
16: n = new Node(item)
17: n.locked = true

18: n.next = curr
19: pred.next = n
20: for all entries in write-sets do
21: if entry.pred = pred then
22: entry.pred = n

23: else . remove
24: curr.deleted = true
25: pred.next = curr.next
26: for all entries in write-sets do
27: if entry.pred = curr then
28: entry.pred = pred
29: else if entry.curr = curr then
30: entry.curr = curr.next

31: for all entries in write-sets do
32: unlock pred (and curr if remove)

33: end procedure

The next step of the commit procedure is to publish writes on the shared
linked-list, and then release the acquired locks. This step is not straightforward
because each node may be involved in more than one operation of the same
transaction. In this case, the saved pred and curr of these operations may change
according to which operation commits first.

(a) Two add operations (2 and 3). (b) add(4) and remove(5).

Fig. 1. Executing more operations that involve the same node in the same transaction.



For example, in Figure 1(a), both 2 and 3 are inserted between the nodes
1 and 5 in the same transaction. During commit, if node 2 is inserted before
node 3, it should be the new predecessor of node 3, but the write-set still records
node 1 as the predecessor of node 3. In OTB guidelines, G2.4 solves this issue.
When node 2 is inserted, the operation scans the write-set again to find any
other operation that has node 1 as its pred and replaces it with node 2. The
same technique is used in the case of removal (Figure 1(b)). When node 5 is
removed, any write-set entry that has node 5 as its curr replaces it with node
6, and any write-set entry that has node 5 as its pred replaces it with node 1.
Lines 20-22 and 26-30 illustrate these cases.

It is clear that the inserted nodes have to be locked until the whole commit
procedure is finished. Then they are unlocked along with the other pred and curr
nodes (line 17). For example, in Figure 1(a), all nodes (1, 2, 3, 5) are locked and
no transaction can access them until the commit terminates.

3.3 Optimized OTB-Set

One of the main advantages of OTB over the original PTB is that it uses the un-
derlying (lazy) data structure as a white-box, which allows more data structures-
specific optimizations.

In general, decoupling the boosting layer from the underlying concurrent data
structure is a trade-off. Although, on the one side, considering the underlying
data structure as a black-box means that there is no need to re-engineer its
implementation, on the other side, it does not allow to customize its implemen-
tation and thus to exploit the new transactional specification, especially when
the re-engineering effort can be easily achieved. For this reason, as showed in
the previous section, we decided to split the re-engineering efforts (required by
OTB) into two steps: one general (concluded in OTB guidelines G1 and G2 );
and one more specific per data structure (concluded G3 ). We believe this divi-
sion makes the re-engineering task easier and, at the same time, it allows specific
optimizations for further enhancing the performance.

In this section, we show optimizations for our OTB-Set, leveraging the fact
that it treats the underlying lazy linked-list as a white-box and, therefore, it can
be adapted as needed. Due to space constraints, we defer the details on how to
modify the aforementioned “non-optimized” algorithms to Appendix B.

Unsuccessful add and remove. The add and remove operations are not neces-
sarily considered as writing operations, because duplicated items are not allowed
in the set. For example, if an add operation returns false, it means that the item
to insert already exists in the set. The commit of such operation can be done by
only checking that the item still exists in the set, which allows to treat unsuccess-
ful add operations as successful contains operations. This way, the transaction
does not acquire any lock for this operation at commit. The same idea can be
applied on the unsuccessful remove operation which can be treated as an unsuc-
cessful contains operation during commit.



Accordingly, in our OTB-Set, both contains and unsuccessful add/remove
operations are considered as read operations (which add entries only to the se-
mantic read-set and do not acquire any semantic locks during commit). Only suc-
cessful add and remove operations are considered read/write operations (which
add entries to both the read-set and the write-set and thus acquire semantic
locks during commit).

In the lazy linked-list, the add and remove operations acquire locks on the
pred and curr nodes even if the operations are unsuccessful. PTB inherits this
unnecessary lock acquisition because it uses the lazy linked-list as a black-box.

Eliminating Operations. As shown in Algorithm 1, each operation starts with
checking the local writes before traversing the shared list. During this step, for
improving OTB performance, if a transaction adds an item x and then removes
the same item x, or vice versa, we allow those operations to locally eliminate
each other. This elimination is done by removing both entries from the write-set,
which means that the two operations will not make any physical modification on
the shared list. No entry in the read-set is locally eliminated because, this way,
the commit time-validation can still be performed on those operations in order
to preserve transaction’s correctness.

In PTB, due to the usage of the underlying lazy linked-list as a black-box, this
scenario is handled by physically adding x to the shared set, and then physically
removing it, introducing an unnecessary overhead.

Simpler Validation. In the case of successful contains and unsuccessful add
operations, we use a simpler validation than the original validation of the lazy
linked-list. In these particular cases, the transaction only needs to check that curr
is still not deleted, since that is sufficient to guarantee that the returned value is
still valid (recall that if the node is deleted, it must first be logically marked as
deleted, which will be detected during validation). This optimization prevents
false invalidations, where conflicts on pred are not real semantic conflicts.

The validation in the skip-list is similarly optimized because we leverage the
rule that all items have to appear in the lowest level of the skip-list. For successful
contains and unsuccessful add operations, it is sufficient to validate that curr is
not deleted, which ensures that the item is still in the set. We can also optimize
unsuccessful remove and contains by only validating the pred and curr in the
lowest level to make sure that the item is still not in the set, because if the item
is inserted by another transaction, it must affect this level. For successful add
and remove operations, all levels need to be validated to prevent conflicts.

Optimized Commit. To ensure that the operations in Figure 1 are executed
correctly, the write-set has to be re-scanned for each write operation (according
to the OTB guideline G2.4 ), as we showed in Section 3.2. This overhead be-
comes significant if the write-set is relatively large. We optimize this routine and
avoid the need of re-scanning the write-set by the following points. (1) The items



are added/removed in descending order of their values, regardless of their order
in the transaction execution. This guarantees that the pred of each write-set
entry is always valid, non-deleted, and not touched by any previous operation
in the transaction. (2) Operations resume traversal from the saved pred to the
new pred and curr nodes. At this stage, the pred and curr nodes can only be
changed because of some previous local operations. This is because the trans-
action already finished the lock acquisition and validation, which prevents any
conflicting transaction from proceeding.

Using these two points, the issue in Figure 1(a) is solved without re-scanning
the write-set. The first point enforces that node 3 is inserted first. Subsequently,
according to the second point, when 2 is inserted, the transaction will resume
its traversal from node 1 (which is guaranteed to be locked and non-deleted).
Then, it will detect that node 3 is its new succ, and will correctly link node 2.

The removal case is shown in Figure 1(b), in which node 5 is removed and
node 4 is inserted. Again, 5 must be removed as first (even if 4 is added earlier
during the transaction execution), so that when 4 is added, it will correctly link
to 6 and not to 5. Two subsequent remove operations follow the same procedure.

Skip-list uses the same procedure but at all levels. This is because each level
is independent from the others, which means that the preds of the same node
in two or more levels may be different. For this reason, the same procedure
described above is repeated at each level, independently.

4 Correctness

In this section, we discuss the arguments that we use for assessing the correctness
of OTB-Set, and, due to space constraints, we report the detailed correctness
proof in Appendix A.

The correctness of OTB-Set can be proved in two incremental steps. The first
step is to show that, after the modifications needed for supporting the execution
of transactions, each single operation on the set is still linearizable, like the lazy
set. The second step consists of showing that the whole transaction is opaque [9].

A) Linearizability : Each operation traverses the set following the same rules
as in the lazy set. After the traversal, we can distinguish between write and read
operations’ behavior. A write operation, instead of acquiring the locks on the
involved nodes instantaneously after the traversal, it acquires the same locks,
but at transaction commit time. Since the transaction is validated after the
locks acquisition using the same validation done by the lazy set, the lineariza-
tion points of each write operation is just shifted to the commit phase of the
transaction (rather than after the operation as in the lazy set). We cannot use
the same arguments for defining the linearization point of the read operations in
our OTB-Set. In fact, in lazy set, a contains operation is wait-free, which im-
plies that its linearization point is when the curr node is checked4. In OTB-Set,

4 In some exceptional cases, discussed in [13], the linearization point of the unsuccessful
contains operation becomes earlier. However, those special cases are not relevant
when we discuss the correctness of our OTB-Set.



where contains operations are no longer wait-free, this point is replaced with
the point when each operation is re-validated during the transaction commit.

B) Opacity : Considering the transaction as a whole, the combination of lazy
writes, post-validation, and commit-time-validation is sufficient for guarantee-
ing opacity. In fact, this is the same approach used at memory level in many
lazy STM algorithms such as NOrec [5] to enforce opacity. Specifically, all op-
erations are linearized at the transaction’s commit time and after acquiring all
the semantic locks. This allows the committed transactions to appear as hap-
pened at a single indivisible point in time. Aborted transactions do not expose
any write to other transactions, because, in general, transactions never write
in the shared set unless they are sure that they will not eventually abort. Live
transactions (whether they will eventually commit or abort) never observe an
inconsistent state because they validate their entire read-set after each read (in
the post-validation routine ) and during the transaction commit (in the commit-
time validation routine). Finally, the effect of interfering operations of the same
transaction is preserved leveraging the points G2.1 and G2.4 of OTB guidelines.

The optimizations described in Section 3.3 do not break opacity simply be-
cause they do not contradict with any of the previously mentioned evidences. It
is also straightforward to prove that composing the operations on two different
OTB-Set instances does not break the opacity of the transaction as a whole.
This is because each read/write-set entry will be validated and/or published
independently.

5 Experimental Evaluation

In this section we evaluate the performance of our OTB-Set’s Java implemen-
tation equipped with the optimizations described in Section 3.3. We compared
it with lazy set [13] and PTB set [14]. In order to conduct a fair comparison,
the percentage of the writes in all of the experiments is the percentage of the
successful ones, because an unsuccessful add/remove operation is considered as
a read operation. Roughly speaking, in order to achieve that, the range of ele-
ments is made large enough to ensure that most add operations are successful.
Also, each remove operation takes an item added by previous transactions as a
parameter, such that it will probably succeed. In each experiment, the number
of add and remove operations are kept equal to avoid significant fluctuations of
the data structure size during the experiments.

The experiments were conducted on a 64-core machine, which has four AMD
Opteron (TM) Processors, each with 16 cores running at 1400 MHz, 32 GB of
memory, and 16KB L1 data cache. Threads start execution with a warm up
phase of 2 seconds, followed by an execution of 5 seconds, during which the
throughput is measured. Each plotted data-point is the average of five runs.

We use transactional throughput as our key performance indicator. Although
abort rate is another important parameter to measure and analyze, it is mean-
ingless in our case. Both lazy set and PTB set do not explicitly abort the trans-
action. However, there is an internal retry for each operation if validation fails.
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Fig. 2. Throughput of linked-list-based (LL) and skip-list-based (SL) set with 512
elements (labels indicate % write transactions). Four different workloads: read-only (0%
writes), read-intensive (20% writes), write-intensive (80% writes), and high contention
(80% writes and 5 operations per transaction).

Additionally, PTB aborts only if it fails to acquire the semantic locks, which is
less frequent than validation failures in the OTB-Set. We recall that the lazy set
is not capable to run transactions at all (i.e., it is a concurrent data structure,
not transactional). We only show it as a rough upper bound for the OTB-Set
and PTB, but it actually does not support transactional operations.

We first show the results for a linked-list implementation of the set. In this
experiments, we used a linked-list with 512 nodes. In order to conduct a com-
prehensive evaluation of OTB-Set’s performance, in the first row of Figure 2 we
show the results for four different linked-list workloads: read-only (0% writes
and 1 operation per transaction), read-intensive (20% writes and 1 operation
per transaction), write-intensive (80% writes and 1 operation per transaction),
and high contention (80% writes and 5 operations per transaction). In both
read-only and read-intensive workloads, OTB-Set performs closer to the (upper
bound) performance of the lazy list than PTB-Set. This is expected, because
PTB incurs locking overhead even for read operations. In contrast, OTB-Set,
like lazy linked-list, does not acquire locks on read operations, although it still
has a small overhead for validating the read-set. For the write-intensive work-
load, PTB starts to be slightly better than OTB-Set, and the gap increases in
high contention workloads. This is also expected, because contention becomes
very high, which increases abort rate (recall that aborts have high overhead due
to re-traversing the list in linear time). In these high/very high contention sce-
narios, the “pessimism” of PTB pays off more than the “optimism” of OTB-Set.
For example, in the high contention scenario, five operations are executed per
transaction. In PTB, each operation (pessimistically) locks its semantic items
before executing each operation and then it keeps trying to execute the opera-



tion on the underlying (black-box) concurrent data structure. On the other hand,
OTB suffers from aborting the whole transaction even if the last operation of
the transaction fails.

In the second row of Figure 2, the same results are shown for the skip-list-
based set of the same size (512 nodes). The results show that OTB-Set performs
better in all cases, including the high contention case. This confirms that OTB-
Set gains because of the reduced overhead of aborts. Although the semantic
contention is almost the same (for a set with 512 nodes, contention is relatively
high), using a skip-list instead of a linked-list supports OTB-Set more than PTB.
This is mainly because skip-list traverses less nodes of the set through the higher
levels of the skip-list. Thus, even if the whole transaction aborts, re-executing
skip-list operations is less costly than linked-list.
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Fig. 3. Throughput of skip-list-based set with 64K elements (labels indicate % write
transactions). Four different workloads: read-only (0% writes), read-intensive (20%
writes), write-intensive (80% writes), and high-contention (80% writes and 5 operations
per transaction).

The last set of experiments (Figure 3), shows the performance when the
contention is significantly lower. We used a skip-list of size 64K and measured
throughput for the same four workloads. The results show that in such cases,
which however are still practical, OTB-Set is up to 2× better, even in write-
intensive and high contention workloads. This is mainly because in the very low
contention scenario, the PTB’s eager locking mechanism becomes ineffective and
a more optimistic algorithm, such as OTB-Set, is preferable.

6 Conclusions

In this paper we provided a detailed design and implementation of a trans-
actional optimistic set data structure (OTB-Set). We presented two versions
of OTB-Set: one “non-optimized”, derived from the implementation of general
guidelines; and one “optimized”, which aims at further enhancing the perfor-
mance. We also proved the correctness of the designed set and showed that
OTB-Set operations guarantee opacity. Our evaluation revealed that the per-
formance of OTB-Set is closer to highly concurrent (non-transactional) lazy set
than the original transactional boosting version in most of the cases.
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A Detailed Correctness of OTB-Set

In this appendix, we give more details about the correctness of OTB-Set. In
Section A.1 we assume, without loss of generality, transactions composed of only
one OTB-Set operation and we prove that this operation is linearizable. Then, in
Section A.2, we prove that if the transaction contains more than one operation
of a non-optimized OTB-Set, the implementation of OTB guidelines guarantees
opacity [9]. Finally, Section A.3 discusses the correctness of the optimized OTB-
Set.

A.1 Linearization

Although OTB-Set does not use the lazy set as a black box, it uses similar mech-
anisms for traversing the set and validating the nodes accessed. For this reason,
we can assess the correctness of our OTB-Set implementations by relying on the
correctness of the lazy set. Again, we focus on a linked-list-based set, assuming
that applying the same concepts to a skip-list-based set is straightforward.

- Successful add. As described in [13], a successful add operation in a lazy linked-
list is linearized in the moment when pred.next is set. This is because, at this
point, the add operation already i) acquired the lock on pred, ii) validated that
pred and curr are not deleted and that pred still links to curr. This means that
the operation is still valid and no other concurrent operation can interfere with
it. In OTB-Set, the same linearization point is selected. We now assume that
transactions consist of only one operation. This means that, until the moment
of acquiring the lock on pred, both the lazy set and OTB-Set behave in a
similar way, even though the lock acquisition itself is delayed to the commit
phase in OTB-Set. Once the lock is acquired in OTB-Set (at commit), it uses
the same validation as the lazy set which allows having the same linearization
point.

- Successful remove. In the lazy linked-list, the successful remove operation is
linearized when the entry is marked as deleted. We can safely select the same
linearization point in OTB-Set because, although this point is shifted to the
transaction’s commit, OTB-Set still behaves similar to the lazy set, like the
add operation.

- Successful contains. Here, the linearization points of lazy set and OTB-Set
are different. In lazy set, the contains operation is wait-free and the successful
contains operation is linearized immediately when the deleted flag of a match-
ing entry is observed to be false. In OTB-Set, however, this point cannot be
selected as the linearization point for two reasons. First, the linearization point
should be selected somewhere in the commit phase, thus allowing the further
extension of having more than one operation in the same transaction (that we
will discuss in Section A.2). Second, according to the point G2.4 of the OTB
guidelines, all operations, including the contains operation, should re-validate
their results at commit, which means also that the operation may fail during
the commit and therefore the transaction may abort. For this reason, we select



the linearization point of the contains operations when those operations are
successfully re-validated at commit time.

- Unsuccessful contains. Like successful contains, the unsuccessful contains
operations are re-validated at commit time and we select this re-validation
point as our linearization point. It is worth to note that the definition of the
linearization point of the unsuccessful contains operations in the lazy set is
not straightforward. In fact, in the lazy linked-list, the linearization point of
a logically (but not physically) deleted node has to be before that any other
transaction occasionally added a new node with the same item. However, this
case in our OTB-Set is not relevant because we abort the transaction in this
case (remember that we validate that both the pred and curr nodes are not
logically deleted). Although this abort can be seen as a false conflict, we allow
it for the sake of making a simple validation process, and assuming that such
case is rare. The lazy set also suffers from a similar false conflict in the case
of unsuccessful remove, and they also chose not to optimize this case for the
sake of a simple and clear validation process.

- Unsuccessful add/remove. In the non-optimized version of the OTB-Set, de-
scribed in Section 3.2, the linearization points of the unsuccessful add/remove
operations are the same as in the lazy set. This is because, in this non-optimized
version, the same locks (on the pred and curr nodes) are acquired and the same
validation is used. In the optimized version of the OTB-Set, as described in
Section 3.3, those linearization points change because we now consider the op-
erations as read operations and we do not acquire any locks for them during
commit. As we mentioned in Section 3.3, those operations are considered dur-
ing commit as successful/unsuccessful contains operations, which motivates
using the same linearization points as the contains operation in this case,
rather than the linearization points mentioned in [13].

A.2 Opacity - Non-Optimized OTB-Set

Opacity was proposed in [9] to formally proof the correctness of TM implemen-
tations, and most STM algorithms are proven to guarantee opacity [5,6,19,15].
Intuitively, as mentioned in [9], opacity is guaranteed if three requirements are
captured: i) every committed transaction atomically appears in a single indivis-
ible point in the history of the committed transactions, ii) live transactions do
not see the intermediate results of any aborted transaction, iii) transactions are
always consistent even if they will eventually abort. In this section and in the fol-
lowing section, we show that those three requirements are preserved in both the
“non-optimized” and the “optimized” OTB-Set, respectively. The correctness of
the non-optimized OTB-Set can be also used for any other lazy data structure
as far as it follows the same two guidelines mentioned in Section 2 (i.e., G1 and
G2 ).

In the following, we borrow the same terminology used in [9]. However, for
brevity, instead of having two points in the history for each operation (the in-
vocation point and the return point), we will only show one point which reflects
the return point. This is acceptable because any transaction is serial, meaning



that it does not invoke a new operation until the previous operation returns its
value, and the invocation point is not relevant to the execution of any other
transaction.

- Equivalence to a legal sequential history. The first requirement for a history H
to be opaque is that if we remove all non-committed transaction, the resulting
sub-history H ′ is equivalent to a legal sequential history S that preserves the
real-time order of the transactions in H ′. In OTB-Set, H ′ preserves the real-
time order because all operations are linearized during the commit phases of
their transactions. For that reason, a committing transaction can be serialized
in one point, right after the transaction successfully acquires its semantic locks.
After this serialization point, if the transaction successfully validates its read-
set, all conflicting transactions in H ′ will be serialized after it. If it fails in
validation, it will simply abort.
Precisely, we have five cases to cover for proving the legality of any sub-history
H ′ of some committed OTB-Set transactions T1, T2, ..., Tn:
1. Transaction are executed serially: which means that each transaction starts

after the previous transaction commits. The real-time order in this case is
natively preserved because after Ti commits, all its writes are immediately
visible to the following transactions (threads are not caching any state of
the objects).

2. Concurrent transactions are independent (which means that they have
no intersection in their read/write-sets or the intersection is only between
read-sets). Natively, they can be serialized in any order. The history of each
transaction as a standalone transaction is kept legal using the guidelines
G2.1 and G2.4. For example, in the following history:
H1 =< add(Ti, x, true), contains(Ti, x, true), remove(Ti, x, true), tryCTi

,
CTi >
G2.1 guarantees that both the contains and the remove operations can-
not return an illegal value (which is false in this case) during the execution
of the transaction, and G2.4 guarantees that the remove operation will
be executed correctly at commit (remember that we are now proving the
non-optimized version of OTB-Set which means that operations are exe-
cuted according to their invocation order and without any local elimination
during commit).

3. The write-sets of two concurrent transactions, Ti and Tj , intersect. Clearly
the commit phases of those transactions can never execute concurrently.
Either one of them will fail in acquiring the semantic locks and thus will
abort, or Tj will start its commit after Ti entirely finishes its commit and
releases its locks, which allows serializing Ti before Tj .

4. The read-set of Ti intersects with the write-set of Tj and the read-set of
Tj does not intersect with the write-set of Ti. In this case, Ti will either
abort during the commit-time validation, or it will successfully finish its
validation before Tj acquires the “conflicting” semantic locks. In the latter
case, Ti can be safely serialized before Tj .



5. The read-set of Ti intersects with the write-set of Tj and the read-set of
Tj intersects with the write-set of Ti. In this case, any scenario where both
transactions concurrently commit is illegal. For example, in the following
two histories5:
H2 =< remove(Tk, x, true), remove(Tk, y, true), tryCTk

, CTk
, add(Ti, x, true),

contains(Tj , x, false), add(Tj , y, true), contains(Ti, y, false), tryCTi
, CTi

,
tryCTj

, CTj
>

H3 =< remove(Tk, x, true), remove(Tk, y, true), tryCTk
, CTk

, add(Ti, x, true),
contains(Tj , x, true), add(Tj , y, true), contains(Ti, y, true), tryCTi , CTi ,
tryCTj

, CTj
>

Both histories are illegal because the contains operations in Ti and Tj

cannot return both false or both true6. A possible legal case is that the
contains operation of Ti returns false and the one of Tj returns true
(which allows Ti to be legally serialized before Tj).
Our validation process in Algorithm 2 prevents that all these illegal sce-
narios can happen. As we validate that the nodes in the read-set are both
unlocked and valid. Ti and Tj cannot both successfully acquire the semantic
locks and then successfully validate their read-sets before starting to write.
At least one transaction will abort because some entries in its read-set is
locked by the other transaction.

- The effect of the aborted transactions. Aborted transactions in OTB-Set have
no effect on the live transactions. This is simply because transactions do not
publish any writes until their commit phase. During commit, if a transaction
successfully acquires the semantic locks and then it successfully validates its
read-set, it cannot abort anymore. Accordingly, it is safe at this point to start
writing on the shared set.

- Consistency of live transactions. Transactions which guarantee opacity should
always observe a consistent state. This also includes the live transactions,
which are the transactions that did not yet commit or abort. Theoretically,
as mentioned in [9], we can transform any history which contains some live
transactions to a complete history by either committing or aborting those
live transactions. The challenge here is to prove that this completed history
is still legal (which means that the operations executed so far inside the live
transactions are legal). In OTB-Set we guarantee that live transactions always
observe a consistent state by the post-validation procedure which validates, af-
ter each operation, that the entire read-set is still valid. Precisely, in a history
H, an operation < op(Ti, x, true/false) >, can be implicitly extended to either
< op(Ti, x, true/false), validate(Ti, succeeded) > or < op(Ti, x, true/false),
validate(Ti, failed), ATi

> according to whether its validation succeeds or
fails, which guarantees preserving the legality of H.

5 We put the first two operations of Tk to enforce that x and y are both in the set
before Ti and Tj start.

6 This case is an example of producing a cyclic opacity graph which is mentioned in
[9].



A.3 Opacity - Optimized OTB-Set

In this section we show how each optimization discussed in Section 3.3 does not
prevent transactions to guarantee opacity.

- Unsuccessful add/remove. OTB-Set validates the unsuccessful add/remove op-
erations as contains operations. It can be easily shown that this does not
break transactions’ consistency. Although operations are semantically differ-
ent, handling them in the same way at commit (at the memory level) does
not break the semantics with any means, as far as the same result is validated
during commit.

- Eliminating Operations. Elimination does not break consistency because op-
erations are eliminated only from the write-sets. If the operations were also
eliminated from the read-sets, opacity may be broken because another trans-
action may modify the set and then commit successfully before the commit
of the former transaction, which violates the serialization points we men-
tioned in the previous section. For example, in the following history: H4 =<
add(Ti, x, true), remove(Ti, x, true), add(Tj , x, true), tryC(Tj), C(Tj), tryC(Ti),
C(Ti) > transaction Ti becomes illegal. This is because at the serialization
point of Ti, when it commits, the add operation cannot return true because Tj

already added x to the set and committed. In our OTB-Set implementation,
Ti will detect during its commit that Tj added x because the eliminated oper-
ations are still in the read-set and they will be validated during commit, and
thus triggering the abort of Ti.

- Simpler Validation. For the successful contains and the unsuccessful add op-
erations, the curr node is detected to match the searched item x, and to be
not deleted. During the commit phase of a transaction Ti, it is sufficient to
check the deleted mark of the curr node. This is because any other transaction
cannot execute any new writing operation on x before deleting the previous
node, and deleting x is done first by logically mark the node as deleted. This
means that, if Ti observes at commit that x is not logically deleted, then the
operation is still valid. In this case, there is no need to validate the pred node.

- Optimized Commit. The correctness of this optimization is based on two facts.
First, as write operations on the same item are eliminating each other, we can-
not observe two entries of a transaction Ti’s write-set, which add (or remove)
the same item x. This means that all operations in the write-set are commu-
tative (i.e. not semantically conflicting), and can be (semantically) executed
in any order. Second, at memory level, it becomes also unnecessary to execute
those write operations in the same order as their original order, because each
operation does not change the pred of any subsequent operation (as they are
sorted in a descending order). As the pred node is not changed, it is safe for
any operation to start from that pred node to reach the new pred and curr
nodes.



B Detailed Optimized OTB-Set Algorithms

In Section 3.3, we showed four optimizations on the basic implementation of
OTB-Set. In this appendix, we show more details about how to modify Algo-
rithms 1, 2, and 3 to maintain these optimizations.

Algorithm 4 OTB Linked-list: Optimized add, remove, and contains opera-
tions.

1: procedure Operation(x)

. Step 1: search local write-sets
2: if x ∈ write-set and write-set entry is

add then
3: if operation = add then
4: return false
5: else if operation = contains then
6: return true
7: else . remove
8: delete write-set entry
9: return true

10: else if x ∈ write-set and write-set entry
is remove then

11: if operation = remove or operation =
contains then

12: return false

13: else . add
14: delete write-set entry
15: return true

16: ...

. Step 3: Save reads and writes
17: read-set.add(new ReadSetEntry(pred,

curr, operation))
18: if Successful add/remove then
19: write-set.add(new WriteSetEntry(pred,

curr, operation, x))

20: if Successful operation then
21: return true
22: else
23: return false

24: end procedure

Algorithm 4 shows the modification to steps 1 and 3 of Algorithm 1 to achieve
the first two optimizations. In step 1, eliminated operations are removed from
the write-set, while still keeping them in the read-set (lines 8 and 14). In step 3,
only successful add and remove operations are added to the write-set (line 19)

Algorithm 5 OTB Linked-list: optimized validation.

1: procedure Validate(read-set)
2: ...
3: for all entries in read-sets do
4: if successful contains or unsuccess-

ful add then
5: if curr.deleted then
6: return false

7: else
8: if pred.deleted or curr.deleted

or pred.next 6= curr then
9: return false

10: return true
11: ...

12: end procedure

Algorithm 5 shows the optimized validation procedure. Lines 3-10 replace
lines 6-8 in Algorithm 2.



Algorithm 6 OTB Linked-list: optimized commit.

1: procedure Commit
2: ...
3: sort write-set descending on items
4: for all entries in write-sets do
5: curr = pred.next

6: while curr.item < x do
7: pred = curr
8: curr = curr.next
9: ...

10: end procedure

Algorithm 6 describes the modified commit procedure, which replace lines 20-
22 and 26-30 of Algorithm 3). Line 3 applies the first guideline point in Section
3.3. Lines 5-8 apply the second guideline point.
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