
On the Viability of Speculative Transactional Replication in Database Systems:
a Case Study with PostgreSQL

Sebastiano Peluso∗, Roberto Palmieri†, Francesco Quaglia∗, Binoy Ravindran†

Sapienza University of Rome (∗), Virginia Tech (†)

Abstract—We investigate the feasibility of systematic specu-
lative processing in the context of Optimistic Atomic Broadcast
(OAB) based replication of database systems. Specifically, we
present the design and prototypal implementation of a fully
speculative version of the PostgreSQL open source relational
database, together with experimental results showing perfor-
mance advantages over non-speculative replication.

I. INTRODUCTION

Active replication is a classical means for providing fault-
tolerance and high availability. It is based on the enforcement
of consensus among the replicas on a common total order
for request processing. The establishment of the agreed upon
total order is typically demanded to an Atomic Broadcast
(AB) group communication primitive, representing a conve-
nient abstraction of consensus [3].

For replication in transaction processing systems, a key
optimization technique has been presented in [5]. It is based
on the observation that replicas can use the spontaneous net-
work delivery order as an early, although possibly erroneous,
guess of the total delivery-order of messages eventually
defined via AB. This idea is nicely encapsulated by the Op-
timistic Atomic Broadcast (OAB) primitive [5], representing
a variant of AB where the notification of the final message
delivery order is preceded by an early optimistic message de-
livery indication. By activating transaction processing upon
the optimistic message delivery event (rather than waiting
for the final order to be established), OAB-based replica-
tion techniques allow overlapping the (otherwise sequential)
replica synchronization and local computation phases.

Early solutions along this path [5] admitted speculative
processing of a single optimistically delivered transaction
along any chain of conflicting transactions. Hence, no prop-
agation of the output of speculatively processed transactions
was allowed. More recent advances have instead been based
on the idea to increase the actual level of speculation by
(A) allowing propagation of the output of speculatively pro-
cessed transactions along conflicting-transaction chains (see
[7]), and (B) speculatively exploring multiple serialization
orders so to increase the likelihood of materializing in-
advance the order actually matching the OAB outcome (see
[8]). However, at current date, the assessment of replication
protocols making systematic use of speculation has been
limited to the context of in-memory transactional systems,
such as Software Transactional Memories, hence not cover-
ing the case of traditional database systems. Also, in most

cases, the assessment has been based on simulation studies
(see [8], [9]), rather than real implementations.

In this article we complement the aforementioned results
by presenting the design and implementation of a speculative
version of the well known PostgreSQL open source rela-
tional database [1]. This version supports all the capabilities
required to put in place the two strategies depicted in the
above points (A) and (B). In particular, it allows specula-
tively produced post-images of the data-items, which are
still uncommitted, to be visible to concurrent transactions,
thus supporting speculation along chains of conflicting trans-
actions. Also, it allows for concurrently running multiple
speculative instances of a same transaction, each one access-
ing a different speculative snapshot of the database. Hence,
multiple serialization orders can be concurrently explored
in a speculative fashion. We also report the results of an
experimental study, based on TPC-C [11], which quantify
the performance improvements wrt replication schemes not
making systematic use of speculation.

The remainder of this paper is structured as follows. In
Section II literature results related to our study are discussed.
In Section III our design choices and the modifications
made to the kernel of PostgreSQL are described. Section
IV presents the experimental study.

II. RELATED WORK

The work in [2] explores the idea of speculatively exe-
cuting transactions by exploiting the notion of save-point.
Specifically, upon the detection of a conflict, a copy of the
current transaction is forked and remains idle, thus acting
as the save-point to reduce the cost of transaction aborts.
This work is targeted to non-replicated real-time databases,
while our focus is on the design/implementation of core
mechanisms in support of distributed protocols for replicated
transactional systems.

In [10] the post-images of data, whose locks are held by
prepared distributed transactions are allowed to be accessed
by conflicting transactions, thus reducing the lock-wait time.
Differently from this approach, we target replicated transac-
tional systems not relying on distributed locking protocols
(rather on the usage of OAB group communication primi-
tives and purely local concurrency control mechanisms).

The proposals in [4], [12] extend the kernel of Post-
greSQL by supporting replica control and concurrency con-
trol in an integrated manner. However, they do not cope with

inner database supports for speculation, which is instead the
target of our work.

The approaches in [7], [8], [9] make systematic use of
speculative schemes for local transaction processing activi-
ties at each replica, thus aiming at maximizing the overlap
between processing and distributed coordination. However,
as already hinted, they have been evaluated limitedly to the
context of Software Transactional Memory systems. Instead,
our focus is on the design/implementation (and evaluation)
of speculative replication in the context of relational database
systems.

III. THE SPECULATIVE VERSION OF POSTGRESQL

A. Overview of PostgreSQL Internals

PostgreSQL relies on a traditional multiprocess architec-
ture based on a front-end server, called Postmaster, which
is in charge of accepting client connections. Each incoming
connection triggers a new transaction activation, which takes
place by spawning a so called Backend transactional process
that takes care of interacting with the client and of per-
forming all the tasks associated with transaction processing.
Each transaction statement is executed by accessing all the
tuples matching the statement parameters. This happens by
ultimately caching these tuples into an in-memory shared
heap, concurrently accessible by all the Backend processes.
Each transactional process keeps an in-memory data struc-
ture, called TupleTable, which caches the references to the
accessed tuples within the shared heap.

PostgreSQL implements a multi-version concurrency con-
trol scheme providing Snapshot-Isolation (SI) semantic. This
is achieved by creating a new version of a tuple whenever
a write operation is executed on it, and by letting any
read operation access the most recent version of the target
tuple that was already committed at the time the transaction
started. At most one uncommitted version of each tuple can
exist at any time, which we refer to as the active version.
Instead, the most recent version generated by a committed
transaction is referred to as the valid version. To determine
tuple visibility, and to detect conflicts, the concurrency con-
trol scheme maintains per-tuple meta-data including a couple
of transaction identifiers, namely < t xmin, t xmax >.
They represent the identifiers of the transactions that created
and updated the tuple version, respectively. Accordingly,
when a transaction T creates an active version of a tuple,
the t xmax value is set to the special value null, while the
t xmax value associated with the valid tuple version is set
to T ’s identifier.

At startup time, each transaction T determines its database
snapshot as the set including T ’s own identifier and the
identifiers of transactions concurrent with T . The latter
include transactions that were already active upon starting up
T , plus any transaction possibly activated after T ’s startup.

The concurrency control mechanism handles read/write
operations as follows. Upon read access to a tuple by

transaction T , the tuple-versions set is used to retrieve the
most recent tuple version committed by a transaction not
concurrent with T . This corresponds to the version having
maximum t xmin value among the versions created by
committed transactions not concurrent with T . Clearly, the
selected tuple might correspond to a version older than the
valid one. On the other hand, if the read request is for a
tuple previously written by T , it is served by accessing the
active version previously created by the same transaction T .
Upon write access to a tuple by transaction T , the following
version checks are performed: if the valid version was
created by a transaction concurrent with T (i.e. t xmin of
the valid version is the identifier of a transaction concurrent
with T), the abort of T is immediately forced. Otherwise,
if there is no currently active version of the target tuple, T
requests an exclusive lock on the valid version, which might
lead to a wait phase. On the other hand, in case an active
version of the tuple exists, T is queued for future access
to the exclusive write lock associated with the tuple. An
additional background process, called Vacuum, takes care of
deleting obsolete tuple versions.

B. Details on the Added Facilities

1) Enhanced Multiversioning: Speculation requires non-
blocking tuple access. Also, for speculation along chains of
conflicting transactions, the post-images of inserted/updated
tuples must be visible before the writing transaction is
committed. They must become visible right upon a so called
complete event [8]. Completion implies that the transaction
already issued its read/write operations, and has logically
issued the commit command, which needs to be mapped
to a non-classical execution semantic, where no immediate
commitment of the updated tuples must be performed.

To support both non-blocking tuple access and the com-
pletion event of speculatively executed transactions, we
have reorganized the data structures implementing the mul-
tiversioning scheme by allowing the existence of multiple
active versions of each individual tuple. In particular, in
the enhanced multiversioning scheme, write-write conflicts,
which originally lead to transaction block or abort, are
handled as insertions of additional active tuple-versions
within the shared heap. Overall, the existence of an active
version of a tuple becomes the expression of a speculative
INSERT/UPDATE operation performed by a transaction in
relation to that tuple. Differently from the original Post-
greSQL architecture, where locks and process-wait were
adopted in case of conflicting access to the unique active
version of a tuple, our pool of multiple active versions is
accessed within critical sections relying on spin-locks.

The support for (i) visibility of speculative tuple versions
produced by transactions that have reached the complete
stage and (ii) speculative deletion of tuple versions, has
been based on the introduction of a couple of additional
1-bit flags < SPEC V ISIBLE, SPEC DELETED >

within the header of each tuple. Right upon a speculative
INSERT/UPDATE of a tuple, the corresponding version
added to the pool is marked as SPEC V ISIBLE = 0,
with the meaning that the tuple is not yet visible to other
transactions. If, and when, the creator transaction reaches the
complete stage, the flag SPEC V ISIBLE is raised, with
the meaning that the written version becomes speculatively
visible to other transactions. In case a DELETE operation is
speculatively executed, the tuple is simply marked with the
flag SPEC DELETED raised. Hence multiple specula-
tive deletions of the same tuple version will all be collapsed
into a single signalling action, and will all be reversible
by resetting the SPEC DELETED flag. In order to
correctly handle the rollback of speculative deletions, a
deletion counter has been added to the tuple header. When
a speculative deletion occurs, the counter is incremented.
When the speculative transaction that deleted the tuple is
aborted the counter is decremented, and, if the value zero
is reached, the SPEC DELETED flag is reset, which
expresses that all the speculative deletions have been undone.

Overall, a real deletion of a tuple version will be actu-
ated only in case the corresponding speculatively executed
transaction is eventually committed. Also, a speculative
version of whichever tuple x is immediately removed by the
shared heap upon the abort of the creator transaction. This
may cause cascading abort of other speculatively executed
transactions as it will be discussed later on.

As for visibility rules over the pool of active versions upon
a read operation by a transaction, we have decided not to
adopt restrictive approaches, thus not limiting the possibility
to speculate by a-priori excluding specific versions. Hence,
the visible versions of a tuple x upon read access by
transaction T (e.g. via the SELECT statement) include both
the valid version (i.e. the latest committed one) and the active
versions (not speculatively deleted) that have been written
by transactions concurrent with T (1). The choice towards
maximizing tuple visibility across concurrent speculative
transactions is motivated by the aim at providing a general
architecture for speculative processing, that could be com-
plemented by plug-in modules implementing specific (more
restrictive) visibility rules. As an example, the protocol in
[7], which limits speculation to a single serialization order
(the one compliant with the current sequence of optimistic
deliveries by the OAB service), may impose that each specu-
lative transaction T accesses a single committed/speculative
version of a tuple x. This tuple version should be the one
produced by the latest transaction T ′ preceding T within the
optimistic delivery sequence, which also wrote x during its
execution.

1The committed versions preceding the valid version are assumed not
to be visible since, as we will point out in Section III-B3, we employ a
validation scheme where a speculative transaction is committable only in
case it read the valid tuple version.

2) Speculative Transactions Forking: As hinted, the ma-
terialization of speculative transaction processing requires
non-blocking access to active tuple versions. However, in
order to permit the exploration of alternative serialization
orders, an additional forking mechanism is needed to allow
a transaction T , which finds n visible versions of a tuple
x, to really explore all the n possibilities, in terms of
returned value of the corresponding read operation. The
implementation of such a forking mechanism represents an
additional modification we made to PostgreSQL.

One problem we had to face is that each child transaction
needs to be a logical clone of the parent one, in terms of data
access operations executed up to the forking point. However,
each of the children needs to figure as a truly independent
transaction, with the meaning that the tuples written by the
parent cannot be considered as representative copies of the
tuples that would have been written by the children up to the
forking point. This is because each written version of a tuple
by a transaction T is kept within the shared heap as a single
copy, whose header only expresses information in relation to
the identity and the state of the creating transaction, namely
T . When T reaches the complete stage, the tuple version
can be marked as SPEC V ISIBLE independently of
whether the children of T are still ongoing transactions.
Overall we had to face the problem of enforcing Piece-
Wise-Deterministic behavior in terms of tuples read by the
children of T , while allowing independent write operations.

To address the above problem, we have augmented the
transactional context natively kept by PostgreSQL by intro-
ducing a so called statementSet. This is a data structure used
for logging, in main-memory, all the commands executed
by a transaction, and the references to all the tuples that
have been accessed while executing each single command.
The statementSet is formed by nodes (one per executed
command) linked together within a linear list. In practice, the
statementSet represents an implementation of an in-memory
logging structure for the transaction read and write sets. In
fact, each node identifies which tuples have been accessed
in either read or write mode within the shared heap as a
result of the execution of a given command. Upon forking
a new child transaction, the statementSet of the parent is
inherited by the child, which uses the inherited references
to the tuple versions read by the parent in order to execute a
validation phase. In particular, the child transaction checks
whether these references are still valid, which means that
the tuple versions read by the parent are still present (in
the same original state, namely committed vs active) within
the shared heap. In the positive case, the child transaction
uses the inherited references to the tuples written by the
parent in order to make its own copies of these tuple versions
(which will be reflected within the shared heap as if they
were actually written by the child transaction). After, the
statementSet of the child is updated in order to correctly
point to the new copies of the tuples logically associated with

those write operations. Overall, real inheritance is actuated
only in relation to the read set of the parent transaction.
Instead, the child transaction re-delivers its own copies of
the written tuples, thus making its write set independent
of the parent one. Also, the above validation phase allows
avoiding to re-process the statements logged by the inherited
statementSet at the side of the child transaction.

On the other hand the validation phase of the inherited
read set may fail since some discrepancy may arise while
determining whether the tuple versions read by the parent
are still actual. In case of discrepancy, it means that the
state of the database has changed such in a way that the
currently explored serialization order, as seen by the child
transaction, is meaningless. This may occur since (A) some
other speculative transaction, from which the current child
transaction should depend on, has been aborted, thus erasing
visibility of its written-tuple versions from the shared heap,
(B) some tuple version that should belong to the read set
has been speculatively deleted, or (C) some tuple version
referenced by the commands in the statemenSet is no more
the most recent committed version.

We have also implemented a mechanism for explicitly
dealing with cases where the above discrepancy is verified.
Specifically, upon validation failure of the read set, the child
transaction resets the references currently kept by the state-
mentSet, and speculatively re-processes all the commands
that are found to be already present within the inherited
statementSet. This will allow the child transaction to specu-
late along a different serialization order on the basis of the
changed state of the database. We note that the re-execution
of the commands belonging to the statementSet will allow
the child transaction to execute its own write operations (if
any), thus generating speculative tuple versions within the
shared heap which are explicitly flagged as being created by
such child transaction instance.

The statementSet records already executed commands.
However, additional commands might be issued to the parent
transaction by the client application after the children have
already been forked. These commands must be transferred
to the children, since they were not yet logged within the
statementSet at the time of the fork operation. This has been
done via a push mechanism where the parent transfers each
new transaction command to the children via socket-pairs.

As a final point, we allow each transaction (the original
parent or the forked children) to further actuate forking
whenever more than one version is visible upon successive
read operations. This approach could be complemented by
plug-in modules aimed at controlling (e.g. limiting) the num-
ber of speculative instances of each transaction depending
on, e.g., the amount of available hardware resources or the
current system load.

3) Transaction Demarcation and Commit: As the litera-
ture on speculative transactional replication protocols indi-
cates, all the speculative instances of a same transaction T

are said to belong to the same family. In the extended version
of PostgreSQL we had to face the need for supporting
families while performing transaction demarcation, and to
include a support for committing families of transactions,
which means committing a single transaction instance (the
one that has been executed along the serialization order that
ultimately complies with the OAB finalization).

As for transaction demarcation, we have associated each
speculative transaction with a couple of identifiers <
FAMILY ID, INSTANCE ID >, indicating the fam-
ily to which the transaction belongs, and the specific identi-
fication code of that transaction within the family. In order
to support this choice we had to maintain compliance with
the demarcation and transaction identification rules natively
adopted by PostgreSQL, since a lot of core sub-systems
within the database kernel rely on the traditional, single-
identifier rule. To support transaction families transparently
to core sub-systems of the database kernel, we have adopted
the following rules. As soon as the first instance T of a
given transactional request is activated, INSTANCE ID
is populated via the traditional transaction identifier assigned
by PostgreSQL, say y. Given that this identifier is unique, we
have decided to use it also to determine the family identifier
for all the transactions that will be forked by T . Hence T
is identified as < y, y > and any other forked transaction
deriving (directly or indirectly) from T will be identified as
< y, z >, where z is again the native identifier assigned
by PostgreSQL upon starting up the transaction. Hence,
a commit operation involving the speculative transaction
< y, z > will ultimately result in triggering the core database
modules by using the transaction identifier z as the commit
parameter. We have also added a shared table (implemented
as a hash table) maintaining the meta-data related to all the
active/committed families. In particular, a flag within the
table entry associated with any family indicates whether the
family has been already committed, in which case no other
speculative transaction instance belonging to that family
could ever be activated/committed.

Let us now address the problem of how to determine
that a given speculative transaction is committable. This
problem comes out since transactions may have observed
either committed or active (speculative) data versions during
their execution, which is instead not allowed by the blocking
SI concurrency control algorithm natively adopted by Post-
greSQL. To detect whether a speculatively executed trans-
action is committable, we have further extended the kernel
of PostgreSQL in order to implement a validation scheme
where the set of tuple versions read by the transaction is
checked to determine whether they currently correspond to
the valid versions within the database. Hence, a speculative
transaction T is identified as committable if it is determined
that each tuple version accessed by the transaction in read
mode was (or has become) the latest committed version.
We note that this validation rule determines a transaction

commit sequence that mimics a locking-protocol schedule.
In fact, if a transaction T reads a tuple version that becomes
the valid version prior T reaches the commit point, then the
schedule is equivalent to one where T takes a lock on that
version, thus excluding the possibility for other transactions
to update that version concurrently with the execution of
T . However, in our solution, such a schedule is determined
a-posteriori of the speculative execution of transactions,
with no blocking phase imposed to the execution. When
committing a transaction T =< y, z >, all the other
speculative transactions belonging to the same family are
aborted, and the family meta-data are permanently updated.

IV. EXPERIMENTAL STUDY

PostgreSQL Version 8.1.15, augmented with speculative
capabilities, has been run on top of a 64-bit NUMA HP
ProLiant server equipped with four 2GHz AMD Opteron
6128 processors (for a total of 32 CPU-cores), 64GB of
RAM, and 2 SSD disks, each providing 500 GB storage,
organized as a RAID-1 array. The operating system is 64-
bit Debian 6, with Linux kernel version 2.6.32.5.

Our test-bed configuration entails a set of TPC-C termi-
nals running transactions via JDBC. The set of tables for one
warehouse are maintained at the database side according to
TPC-C specifications. Each terminal continuously executes
transactions by selecting the business logic from the set
of profiles specified by the benchmark. The only relevant
difference, with respect to a classical execution of TPC-
C (e.g. tailored for the evaluation of stand alone database
systems) is that the test-bed has been augmented with an
OAB emulation sub-system, which mimics group commu-
nication dynamics in a high fidelity fashion. Particularly,
this sub-system is in charge of determining the actual OAB
delays (between the arrival of the transactional request and
its ordering finalization), as seen by the instance of the
speculative PostgreSQL database running on top of the used
32-core machine. Thanks to the OAB emulator, the test-bed
allows reliable assessment of the performance that would be
achieved in case of execution in a real distributed/replicated
environment, while enabling experimentation on top of the
available multi-core machine.

The OAB emulator determines optimistic and final deliv-
ery delays for transactional requests by exploiting available
OAB traces related to executions of the Appia GCS Toolkit
[6] on a cluster of 4 quad-core machines (2.40GHz - 8GB
RAM) connected via a Gigabit Ethernet and using TCP at
the transport layer. By the traces, the average delay for the
final delivery of a message (which definitely establishes its
final order) is about 400 millisec. TPC-C terminals have
been equipped with an OAB-stub for integration with the
OAB emulator, which allows them to perform the following
additional actions (beyond issuing actual database com-
mands): A1) Upon starting up a new transaction, the terminal
mimics the transmission of a corresponding transactional

request via OAB across replicated nodes by delivering a
fictitious message to the OAB emulator component. This
component immediately replies to the terminal, as if the
optimistic delivery of the message was immediately raised
to the local sender (which is typical of real OAB imple-
mentations), and then schedules the final delivery event for
the same message, which mimics the final delivery within
OAB and leads the message to be enqueued into a TO (Total
Order) queue after a given amount of time. A2) Before
issuing the commit command, the complete command is
raised towards the database. Then the terminal awaits that
the corresponding transactional request becomes the top
standing one within the TO-queue. When this happens, the
commit command is issued. In case of positive outcome, the
request gets dequeued from the TO-queue, and the terminal
starts processing a subsequent transaction.

To support this test-bed, PostgreSQL has been further
modified to allow reporting to the terminal the outcome
associated with the whole set of speculatively processed
instances of the transaction activated by the terminal. In
particular, if at least one speculatively processed instance
commits successfully, then the terminal will observe positive
outcome, otherwise the observed outcome will be negative
and the terminal will restart issuing the same transaction.
Also, we extended JDBC drivers for PostgreSQL in order
to allow them to correctly treat the complete command.

A similar test-bed, only entailing a few modifications, has
been used for determining performance results for the case
of traditional non-speculative execution on the original ver-
sion of PostgreSQL. Particularly, the business logic associ-
ated with the terminal is activated only upon the TO-deliver
of the corresponding request (namely when this request
becomes the top standing one into the TO-queue). Also,
upon starting the processing of the transactional logic, the
terminal atomically removes the request from the TO-queue
(hence allowing a transaction on another terminal to start
processing, if the corresponding request becomes the top
standing within the TO-queue) and inserts the request into
a COMMIT-queue. Right before attempting to commit, the
terminal synchronizes with the COMMIT-queue by awaiting
that the corresponding request becomes the top standing
one. After this occurs, the commit command is actually
issued. This leads to scenarios where a kind of concurrency
is allowed, since transactions on different terminals are
allowed to be activated independently of whether already
active transactions exist. On the other hand, they must be
committed in a sequentialized fashion, according to the
insertion order within the COMMIT-queue, which reflects
the TO-deliver order. We note that in case a transaction is
aborted, e.g., due to conflict with a concurrently activated
transaction, then it is simply retried, which will anyhow lead
to eventually commit the transaction according to the TO
defined order (since the required tuples are released by the
conflicting transactions on the basis of timeouts). Overall,

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 4 6 8 10

Ex
ec

ut
io

n
tim

e
(m

illi
se

c)

Number of TPC-C Terminals

Non-spec. Delivery
Spec. Delivery

Non-spec. New Order
Spec. New Order

Non-spec. Order Status
Spec. Order Status
Non-spec. Payment

Spec. Payment
Non-spec. Stock Level

Spec. Stock Level

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8 9 10

Sp

ec
. I

ns
ta

nc
es

 p
er

 T
ra

ns
ac

tio
n

Number of TPC-C Terminals

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 6 8 10

CP
U

Ut
iliz

at
io

n
(%

)

Number of TPC-C Terminals

Non-spec. execution
Spec. execution

Figure 1: Experimental Results.

this variant of the test-bed organization mimics a typical
State Machine (SM) replication approach where transaction
commits are sequentialized according to the outcome of the
total order group communication scheme, but concurrency
is allowed while processing non-conflicting transactions.

In Figure 1 (left) we show the average response time for
both speculative and non-speculative execution of the five
transaction profiles of TPC-C. The data are reported while
varying the number of active terminals from 2 to 10 (we
recall that 10 is the maximum number of concurrent termi-
nals per warehouse admitted by TPC-C). We can observe
how the speculative architecture always provides reduced
response time independently of the considered configuration.
Further, the response time reduction increases while the
system load (i.e. the number of active terminals) is increased.
In such a scenario, the likelihood of transaction conflict
increases, hence leading our speculative approach, which
does not induce transaction-block thanks to the enhanced
multiverisoning scheme, to improve its effectiveness. We
also note that, unless for the case of 8/10 terminals and for
the heavy weight TPC-C Delivery profile, the speculative
architecture provides average response time comparable with
the average latency of the OAB service (namely 400 mil-
lisec), which is instead not guaranteed by the non-speculative
architecture. This phenomenon is due to the fact that upon
the final delivery of the corresponding transactional requests,
the speculative architecture has already been able to process
the whole set of speculative transaction instances covering
the different serialization orders that include the one estab-
lished by the OAB service. This does not occur in scenarios
with more terminals due to the increased level of transaction
conflict, which increases the number of serialization orders
to be speculatively explored (given the increased amount of
active tuple versions upon any read).

Figure 1 (center) shows the average number of speculative
transaction instances activated per each transactional request
handled by the terminal. This value tends to increase linearly
up to 6 terminals, while it exhibits a super-linear increase
with 8 or 10 terminals. However, such an increase creates
a balance favorable to response time since the speculative
scheme increases its gain over the non-speculative one right
when the number of terminals is increased to 8/10.

In Figure 1 (right), we report the CPU usage for both
speculative and non-speculative execution, which has been
computed by only considering the usage of the CPU-cores

not reserved for the terminals (one per each terminal) or for
the OAB emulator (5 in total, since this emulator has been
run by relying on a pool of 5 threads). In other words, it
refers to the CPU-cores available for running PostgreSQL
backend instances. By the data, the CPU usage increases
with the same factor as the number of speculative instances
to be executed per each transactional request handled by the
terminal. This is an indication of reduced overhead from the
support for systematic speculation.

ACKNOWLEDGEMENTS

This work is supported in part by US National Science
Foundation under grants CNS 0915895, CNS 1116190, CNS
1130180, and CNS 1217385. The authors thank Alessio
Manzo and Gabriele Ricciardi for their help in the early
software development phase.

REFERENCES

[1] Postgresql. http://www.postgresql.org/.
[2] A. Bestavros and S. Braoudakis. Value-cognizant speculative

concurrency control. In Proc. of VLDB, pages 122–133,
1995.

[3] X. Defago, A. Schiper, and P. Urban. Total order broadcast
and multicast algorithms: Taxonomy and survey. ACM Com-
puting Surveys, 36(4):372–421, 2004.

[4] B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-r, a new way to implement database replication. In
Proc. of VLDB, pages 134–143, 2000.

[5] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wies-
mann. Using optimistic atomic broadcast in transaction
processing systems. IEEE TKDE, 15(4):1018–1032, 2003.

[6] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible
protocol kernel supporting multiple coordinated channels. In
Proc. of ICDCS, pages 707–710, 2001.

[7] R. Palmieri, F. Quaglia, and P. Romano. Aggro: Boosting stm
replication via aggressively optimistic transaction processing.
In Proc. of NCA, pages 20–27, 2010.

[8] R. Palmieri, F. Quaglia, and P. Romano. Osare: Opportunistic
speculation in actively replicated transactional systems. In
Proc. of SRDS, pages 59–64, 2011.

[9] R. Palmieri, F. Quaglia, and P. Romano. ASAP: An aggres-
sive speculative protocol for actively replicated transactional
systems. In Proc. of NCA, pages 203–211, 2012.

[10] P. K. Reddy and M. Kitsuregawa. Speculative locking
protocols to improve performance for distributed database
systems. IEEE TKDE, 16(2):154–169, 2004.

[11] TPC Council. TPC-C Benchmark, Revision 5.11. Feb. 2010.
[12] S. Wu and B. Kemme. Postgres-r(si): Combining replica

control with concurrency control based on snapshot isolation.
In Proc. of ICDE, pages 422–433, 2005.

