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Abstract—Multicore architectures are becoming increasingly
prone to transient faults and data corruption. Relying on a
multicore architecture is the common solution for increasing
performance and scalability of core applications including trans-
actional applications. In this paper we present SoftX, a low-
invasive protocol for supporting execution of transactional appli-
cations relying on speculative processing and dedicated committer
threads. Upon starting a transaction, SoftX forks a number
of threads running the same transaction independently. The
commit phase is handled by dedicated threads for optimizing
synchronization’s overhead. We conduct an evaluation study
showing the performance obtained with the implementation of
SoftX on a 48 cores AMD machine, running List, Bank and TPC-
C benchmarks. Results reveal better performance than classical
replication-based fault-tolerant systems and limited overhead
with respect to non fault-tolerant protocols. We ported SoftX
to a message-passing architecture, Tilera TILE-Gx. Hardware
message-passing is an important emerging trend in multicore
architectures. Our experiments on Tilera show that SoftX is still
more efficient than replication.

Keywords—Multicore processing; Fault tolerance; Transac-
tional systems

I. INTRODUCTION

Multicore architectures are the current reality for improving
parallelism, scalability and performance of applications. In
particular, this is the case of transactional applications that
are inherently parallel due to the abstraction of transaction. A
single thread application performs transactions that are exe-
cuted concurrently with others invoked by parallel application
threads.

When those applications need to be resilient to faults, then
a fault-tolerance protocol is needed for managing the con-
currency among transactions, replicating objects on multiple
sites or writing them on multiple storage systems. Both the
solutions implicate additional costs for acquiring a distributed
infrastructure but, beyond this, they have a negative impact
on application performance because they introduce additional
overhead such as network communication, distributed synchro-
nization and interaction with stable storage, that can degrade
overall performance even by orders of magnitude.

Faults can be roughly classified in transient and permanent.
Transient faults can cause data corruption. They have many
sources due to software bugs and hardware errors. In addition,
some software bugs are difficult to detect and reproduce like
race condition bugs, which only appear in some schedules
under certain conditions. Soft-errors [1] belong to the category
of hardware-related errors and they are very difficult to detect

or expect/predict. Specifically, soft-errors may happen anytime
during application execution. They are caused by (external)
physical phenomena [2], e.g., cosmic particle strikes, electric
noise, which cannot be directly managed or predicted by
application designers or administrators. As a result, a soft
error is silent, the hardware is not affected by interruption,
but applications may crash or behave incorrectly.

This kind of faults are nowadays becoming a concrete
problem to face with because of the proliferation of multicore
architectures. In fact, the trend of building smaller devices with
increasing number of transistors on the same chip is allowing
designers to assemble these powerful computing architectures.
However, although the soft error rate of a single transistor has
been almost stable over the last years, the error rate is now
growing due to rapidly increasing core counts [2]. A soft error
can cause a single bit in a CPU register to flip (i.e., residual
charge inverting the state of a transistor). Most of the time,
such an event is likely to be unnoticed by applications because
they do not use that value (e.g., unused register). However,
sometimes, the register can contain an instruction pointer or
a memory pointer. In those cases, the application behavior
can be unexpected. In this paper we focus on soft-errors as
a good representative of transient faults that are random, hard
to detect, and can corrupt data.

Widely used replication solutions [3], [4], [5] are usually
more suited for permanent failures, where the entire node goes
down and it can stop or restart according to the adopted failure
model, than transient faults. Byzantine behaviors are usually
connected with transient faults because, when an application
has a transient fault, it can arbitrarily misbehave. However,
byzantine solutions (such as [6], [7]) are more general because
they are designed for minimizing assumptions on execution’s
behavior and for malicious behavior in general. As a result,
their impact on system’s performance could be much higher
than what is actually needed for solving the problem of
transient faults that, indeed, can be seen as a small part of the
bigger picture of byzantine fault-tolerance. As an example, our
solution does not target any malicious application behavior or
security hazard.

A famous example for data corruption effect in production
systems is the major outage of Amazon S3 service1. In this
incident, a single-bit flip corrupted a message and the effect
propagated from one server to another. They managed to fix
it by taking the system down, clearing the system state, and
restoring the system back. This part of the system was not

1http://status.aws.amazon.com/s3-20080720.html
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protected against data corruption errors. The downtime was
over seven hours and initiated by a single transient fault.

We tackle the challenge of solving transient faults by
building a low-intrusive software infrastructure that guaran-
tees reasonable good performance, even though worse than
the original, non resilient to transient faults, version of the
application, but better than typical replication-based solutions.
Our proposed solution guarantees both safety and liveness. The
targeted system should always return correct results without
any downtime.

In this paper we present SoftX, our framework for making
a transactional application resilient to transient faults. SoftX’s
main goal is preventing data corruption caused by a transient
fault from propagating in main memory, without a significant
impact on application’s performance (i.e., 10× worse). This
goal is reached by SoftX leveraging on speculative process-
ing [8], [9]. When a transaction is activated, SoftX captures
the transaction and forks a number of threads that replicate the
execution of the transaction in parallel, speculatively on differ-
ent cores of the system. We assume an underlying hardware
architecture equipped with an enough core count such that
the speculative execution does not hamper the application’s
progress. The outcome of each thread is then compared with
the others using dedicated committer threads. If it corresponds
to the majority outcome, then the transaction can commit and
the control is returned to the application. This approach masks
transient faults happened during the execution on some core
with the speculative execution on other cores.

A straightforward solution to transient faults problem that
supports both safety and liveness is state-machine replica-
tion (SMR) [10]. But SMR approach has several sources of
overhead. Request must be wrapped in a network message,
totally ordered, executed in-order, and finally uses voting
to compare results and accepts the majority result. SMR
requires also a high communication bandwidth. In order to
map SMR approach which is designed for distributed system
to a centralized multicore machine, computational resources,
as well as memory, should be partitioned into replicas [11].

In SoftX, computational resources and memory are not
partitioned and no ordering protocol is required before to
process transactions (e.g., [12], [8]) or after for validating
transactions (e.g., [13]). Moreover, hardware cores are reused
by other transactions after a commit event; they are not
preassigned to certain application threads such that the overall
system’s load is more balanced.

As a practical design choice, SoftX follows the same ab-
straction as Software Transactional Memory (STM) [14] where
transactions are simply enclosed in atomic blocks and the
burden of managing concurrency and guaranteeing isolation
and atomicity is on the STM protocol. This decision does
not represent a limitation for our framework. It can be easily
integrated with other transaction abstractions. We decided
to use the STM’s because this framework is appealing and
transparent from the programmer standpoint.

In order to assess the performance of SoftX, we imple-
mented it on top of the Rochester STM (RSTM) library [15]
a famous framework for developing and running STM al-
gorithms. As competitors, we selected: a well known STM
system such as NOrec [16] as representative of protocols

that are not resilient to transient faults; a modified version,
for being resilient to transient faults, of the classical SMR
approach [11], where transactions are ordered before their
execution; and PBFT [6] as a representative of Byzantine fault-
tolerant systems. This way we attempt to provide an overview
about SoftX’s cost and its performance against fault-tolerant,
as well as non fault tolerant approaches.

Results on a 48-cores AMD server, using well-known
transactional benchmark such as List, Bank and TPC-C [17],
reveal that SoftX has an overhead with respect to NOrec that
is limited to 1.1× except for Bank which is characterized
by very small transactions. Thus, synchronization overhead
is more evident. Real applications usually have larger trans-
actions. Compared to other fault-tolerant approaches, SoftX
gains against the SMR approach by an average of 1.6× and
gains against PBFT by an average of 4.5×.

Hardware message-passing communication is an important
emerging trend in multicore architectures. Given that SoftX
targets multicore architectures, we believe it is important to
study our proposal on both: current shared-bus architectures,
as well as emerging message-passing architectures. In order
to reach this goal, we ported SoftX to the Tilera TILE-
Gx [18] board, a message-passing architecture. Message-
passing architectures do not suffer from the limited bandwidth
of the shared-bus architectures. Results show that SoftX still
outperforms replication-based approaches. SoftX’s overhead
compared to non-fault-tolerant approach (i.e., NOrec) is re-
duced to about 40% on average. Replication-based approaches
also take advantage of the hardware message-passing network.
Their results are now closer to SoftX.

SoftX is optimized for transactional applications because
we believe they fulfill a key role in the space of transient
faults especially because their nature does not allow any kind
of unexpected and unmanageable data corruption.

To the best of our knowledge, this paper is the first
attempt to reduce the scope of data corruption to transactional
processing without the overhead of classical replication-based
solutions. We propose a solution that reduces overhead and in-
creases resources utilization while keeping safety and liveness.

The rest of the paper is organized as follows: we provide a
comprehensive taxonomy of transient fault-tolerant techniques
in Section II. In Section III, we discuss the categories of
transient faults that SoftX can tolerate. Sections IV discusses
how SoftX is designed and implemented in details. SoftX
evaluation and experimental results are in Section V. We
conclude the paper in Section VI.

SoftX’s full implementation, with sources and test-scripts,
is available at www.hyflow.org/downloads/softx.zip.

II. RELATED WORK

Many techniques are proposed to handle transient faults
that cause data corruption or silent data corruption. All tech-
niques are targeting safety where correct results are the main
target. But not all of them guarantee liveness.

Checkpointing is a well known technique in High Perfor-
mance Computing (HPC). The system state is checkpointed
periodically and fault detection mechanisms are installed to
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detect data corruption and restore the system to a correct
system state. A major challenge in these system is determining
how many checkpoints are required. If the error is detected
long time after it occurred, we may have no valid checkpoint
to restore. On the other hand, keeping infinite number of
checkpoints is not practical. Checkpointing only guarantees
safety and has a downtime to restore a checkpoint and re-
execute lost requests. Another problem of checkpointing is the
time required to checkpoint the system which can be large if
the data is huge. [19] has a good survey about checkpointing
techniques.

Other approaches in HPC rely on more complex algo-
rithms. They are known as fault-tolerant algorithms. Some
scientific problems can be modified to support error detec-
tion and correction using some encoding mechanisms like
checksums. These approaches are algorithm specific and they
are difficult to generalize. Encoded processing incurs high
processing overhead and requires extra memory. In [19] more
information about such techniques can be found.

Some less efficient error detection techniques, in terms of
error coverage, are bases on assertions/invariants or symp-
toms [20]. Assertions are conditions that must exist before
and after program state change. Symptoms refer to program
activities that are usually related to faults. For example, ex-
ecuting an unknown instruction, and misprediction of a high
confidence branch. These techniques do not provide full error
coverage. Moreover, these techniques only detect errors and
require another mechanism for recovery like checkpointing.

Hardening crash-tolerant systems can tolerate transient
faults by using error detection mechanisms. When an error
is detected, it is converted to a crash fault by taking the
node down. Hardening can be applied to replication-based
fault tolerant systems that tolerates crash faults. In this case,
it supports both safety and liveness. But it depends on the
accuracy of the error detection. Also, error detection must
detect faults quickly before they can propagate. PASC [21]
is an example of hardening techniques.

Byzantine fault tolerant (BFT) systems can tolerate tran-
sient faults by default. When a transient fault occurs, the pro-
gram can continue its execution (i.e., without crash) while pro-
ducing incorrect behaviors. But BFT systems have a broader
scope as they also target malicious activities (e.g., intrusion).
As a result, usually their overhead is high.

Most BFT systems are distributed systems and relies on
state-machine replication. In state-machine replication, re-
quests must be totally ordered before execution to guarantee
reaching the same state on each replica independently. Each
replica executes requests in the same order. Reaching order
agreement requires exchanging multiple messages. Some BFT
systems execute requests sequentially to guarantee determin-
ism [6], [22]. Other BFT systems execute independent requests
in parallel to increase system throughput [23], [24], [25]. In [7],
a centralized system is split using isolated virtual machines
which represent typical BFT replicas. SoftX aims for reducing
the overhead of the fault-tolerant protocol without partitioning
the machine resources between different replicas and without
replicating system memory.

All replication-based fault tolerant systems requires a net-
work with a good bandwidth. All requests are wrapped in a

network message and reaching consensus requires some more
messages. SoftX’s main goals is to minimize the synchro-
nization overhead. For this reason, we decided to not wrap
transaction requests into network messages and total order
them.

Hardware fault-tolerant architectures are more expensive
and limited in the number of faults they can tolerate due to
the cost of the redundant hardware. For example, NonStop
advanced architecture [26] uses two or three replicas. Each
replica executes the same instructions stream independently
and a voter compares outputs. Hardware resources (memory,
disks) are split between replicas and isolated from each other.

Compared to the above techniques, SoftX is a pure software
solution and it inherits both the checkpointing and replica-
tion advantages. Using transactional memory to speculatively
execute a transaction is similar to take a checkpoint at the
beginning of each transaction. If an error is detected, the
execution returns to that checkpoint and retry. SoftX uses also
the same principle of replication by executing the same trans-
action multiple times in parallel. However, SoftX’s speculative
execution is more lightweight: data are not replicated and there
is no fixed number of replicas. Thus, synchronization overhead
is minimal and cores can be reused by other threads.

SoftX also supports parallel execution of transactions
where multiple thread groups can execute together in the same
time. Transactional memory mechanisms coordinate access to
shared data. Using a dedicated committer threads reduces the
synchronization overhead more by minimizing the number of
CAS operations. Instead of having all threads competing on
the same shared lock, each thread communicates directly with
committer threads via a private variable.

Works tackling similar problems (i.e., redundant parallel
execution) of SoftX has been presented in [27], [28]. In [27],
authors use relaxed determinism which is similar to relaxed
memory consistency model in modern processors. However,
developer must insert determinism hints when precise ordering
is needed. SoftX is transparent to the developer. In [28],
Delta Execution is presented. It aims for increasing software
reliability using multiple, almost redundant, executions. Two
almost identical instances run together and split execution
only at different code sections. Execution joins again later.
Delta Execution requires modifications to the operating system,
compiler, and programming language constructs. SoftX uses
transactions which define exactly where parallel speculated
execution starts and ends. Moreover, SoftX is implemented as
part of an STM library and requires no changes to the operating
system, compiler, and programming language constructs.

Transactional applications are increasingly using Software
Transactional Memory (STM) algorithms [16], [29] to over-
come the programmability and performance challenges of in-
memory processing on multicore architectures.

Lozi et al. introduced recently RCL [30], a locking mech-
anism based on the idea of executing lock-based critical
sections in remote threads. SoftX exploits a similar approach
using dedicated committer threads for processing transactions’
commit phases.
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III. ASSUMPTIONS AND APPLICABILITY

SoftX does not replicate data in memory. Thus, regarding
hardware errors that can affect memory (e.g., soft errors),
it is limited by the memory hardware error detection and
correction techniques like ECC (Error-Correcting Code). These
techniques apply to main memory and cache.

SoftX protects its single copy of the data by limiting write
access to committer threads only. Speculative threads (groups)
have read-only access to shared data. Writes are buffered and
sent to committer threads to decide if they can be committed
safely or a conflict/error happened. Moreover, each committer
thread keeps an undo log of its writes to shared data so that
writes can be validated and if a corruption is detected, memory
can be restored using the undo log. Given that, SoftX cannot
tolerate faults in the memory protection system.

SoftX works on a single machine, thus it cannot tolerate
a crash or a permanent hardware failure of the machine.
Asynchronous checkpointing to a stable storage should be
used to tolerate such faults. SoftX allows for asynchronous
checkpointing in the background and no synchronization is
required.

Similar to other replication-based techniques, SoftX cannot
tolerate deterministic software bugs or incorrect configurations.
A deterministic bug will occur on all replicas and generate the
same results. Thus, voting will not detect it. This problem is
solved by using diversity (i.e., using a different implementation
for each replica).

SoftX still can detect a wide range of transient faults
that corrupt data during transaction execution. For example,
hardware transient faults (e.g., soft errors), and random soft-
ware bugs which are difficult to find/reproduce (e.g., race
condition and other concurrency bugs). SoftX can also tolerate
deterministic software bugs if diversity 2 is used [7], [28].

IV. DESIGN AND IMPLEMENTATION

SoftX is a software transactional memory system that
provides programmers with the traditional TM constructs (e.g.,
atomic block, read, write) for building transactional applica-
tions. At the same time, SoftX’s architecture ensures resiliency
to transient faults.

In SoftX, an application thread that starts a transaction,
forks a group of threads (on different cores). Each thread
in the group executes the same transaction speculatively and
independently from others. At the beginning of a transaction,
they synchronize their starting point such that all observe the
same initial state.

At commit time, instead of proceeding with the commit
operations, the first thread completing its execution contacts
a group of dedicated threads, called committer threads, for
deciding whether the transaction can be committed depending
on the outcome of each speculative execution, or must be
aborted. The transaction is committed only when the threads’
validation succeeds and majority of the speculative executions

2Each replica produces the same results via different approaches (e.g.,
different versions of the same application, different implementations of the
same algorithm)

reach the same stage (i.e., no conflicts and no unmasked faults);
otherwise, an abort signal is sent back to the threads.

Committer threads as a whole can be considered as a
voter component. Instead of allowing the speculative threads to
synchronize with each other for finalizing the commit, relying
on the committer threads for the commit operation offloads
work from the speculative threads. In addition, having dedi-
cated committer threads reduces cache misses and invalidations
(as the overhead of CAS operations is avoided), improving
performance, as also shown in [30].

Algorithm 1 and 2 show SoftX pseudo code. For the sake
of clarity, we skip low-level details. These can be found in
SoftX’s source code available at: www.hyflow.org/downloads/
softx.zip.

Algorithm 1 Transaction speculative execution
1: procedure TXBEGIN(groupId)
2: myIndex← IncAndGet(groupIndex[groupId])
3: if myIndex = 1 then
4: SendSignal(No Commit)

5: txStartT ime← timestamp
6: if myIndex = GROUP SIZE then
7: SendSignal(Proceed Commit)
8: groupIndex[groupId]← 0

9: function TXREAD(addr, groupId)
10: if WriteSet.contains(addr) then return WriteSet.get(addr)

11: val←Memory[addr]
12: while txStartT ime 6= timestamp do
13: txStartT ime← timestamp
14: if ¬V alidate() then
15: AbortGroup(groupId)

16: val←Memory[addr]

17: ReadSet.put(addr, val)
18: return val
19: procedure TXWRITE(addr, val, groupId)
20: WriteSet.put(addr, val)

21: procedure TXCOMMIT(groupId)
22: RequestCommit(myIndex, groupId)
23: loop
24: WaitForResponse

25: if GetResponse() = ABORT then
26: Restart()
27: else
28: FinishGroup()

29: function VALIDATE
30: if CommittersInWriteBack() then
31: Wait()

32: for all entry in ReadSet do
33: if entry.val 6= Memory[entry.addr] then . Value-based
34: return false

35: return true

SoftX’s design is inspired by NOrec [16]. This choice
was made because NOrec uses a single global lock, thus
the synchronization between the speculative threads and the
committer threads is simple and efficient. Speculative threads
proceed similar to NOrec until commit time. Upon reaching the
commit stage, each thread alerts committer threads by setting
a shared flag for accomplishing the commit procedure (i.e.,
validation and memory write-back if the transaction is valid).
Subsequently, speculative threads wait until the notification
of committer threads, and either commit or restart. During
the execution, speculative threads log their read and written
objects into private memory areas called read-set and write-
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Fig. 1. Processing transaction with SoftX.

set, respectively (line 1.17, 1.20)3.

Speculative threads in charge of executing the same trans-
action are logically grouped. A group’s size can be configured
according to the degree of resiliency desired i.e., number of
transient faults that can potentially occur in parallel. SoftX
decides to commit a transaction if the majority of the specula-
tive executions’ outcome coincides. For example, using three
speculative threads per group masks a single transient fault
without re-execution. If more faults occurred, the speculative
execution is restarted to mask these faults.

Figure 1 shows the communication between the speculative
threads of a group and the committer threads (or “commit-
ters”). In this case, a group has three threads. Each thread
executes the same sequence of operations independently from
other threads. At the beginning of a transaction, all threads
of the group must observe the same initial state (i.e., same
starting timestamp). Thus, the first thread, before beginning a
new transaction, sends a signal No_Commit to committers to
pause any commit procedure (line 1.4). This way, the global
timestamp cannot change until all the threads in the group
successfully starts the new transaction (line 1.7). Committers
resume to process commit requests when the last thread in
the group sends the signal, Proceed_with_Commit (line
2.20).

In order to detect possible invalidations during transaction
processing, any member of a group sends an abort signal to
other group members to abort as soon as a previously read
object becomes invalid (line 1.15). For this reason, specula-
tive threads validate their read-set after each read operation
(line 1.12 - 1.16). This way, all group members restart their
execution from the same initial state after an abort.

At commit time, each thread in the group sends a com-
mit request to the committer (line 1.22) and waits for the
decision (line 1.24). The committers consist of replicated
threads such that they can mask transient faults during the
commit procedure. As a result, they act as a “voter.” They
wait for a commit request from each speculative thread, and
starts the commit procedure when requests from all group
members are received (line 2.4). Then, committers need to
agree on which group to commit together (line 2.5). Then,
each committer independently starts to validate the read-set
generated by the speculative execution of a thread in the group
(line 2.9). If the majority of speculative executions is valid
(line 2.11), committers compare group members’ write-sets

3For the identification of lines in the pseudo-codes, we use the notation
Algorithm.Line.

Algorithm 2 Committer threads
1: loop
2: for group← 1 to activeGroupsNum do
3: doneMembers← GetDoneMembersNum(group)
4: if doneMembers = GROUP SIZE then
5: MySelectedGroup(myIndex, group)
6: . Agree on selected group between committer threads
7: abortNum← 0
8: for i← 1 to GROUP SIZE do
9: if ¬V alidate(GetContext(group, i)) then

10: abortNum← abortNum+ 1
11: if abortNum > GROUP SIZE/2 then
12: SendResponse(ABORT, group)
13: else
14: majority ← V ote(group)
15: . Compare group’s write-sets
16: if ¬ majority then
17: SendResponse(ABORT, group)
18: else if myIndex = CUR COMMITTER then
19: if NO COMMIT FLAG then
20: WaitForProceedCommitSig(timeout)

21: DoWriteBack(majority, group)
22: Notify(WRITEBACK DONE)
23: else
24: WaitForWriteBackSig(timeout)
25: if ¬V alidateWriteback() then
26: FixCommitters()

27: SendResponse(COMMIT, group)

28: else if doneMembers > 0 then
29: StartGroupT imeout(group)

to ensure that the majority is identical (line 2.14). At this
stage, each committer thread has reached a decision on whether
to commit or abort its speculative execution independently.
Subsequently, another coordination among committer threads
is required to compare their final decisions (line 2.12, 2.17,
2.27). If a majority is reached, one committer thread executes
the agreed decision (commit or abort). During write-back
operation, an undo log is used to store current values in the
memory before overwriting them. Then, in order to tolerate
transient faults (e.g., a bit flip) during this stage, the other
committer threads confirm that the values written to memory
match the original write-set’s values (2.24, 2.25). Otherwise,
the undo log is used to restore original memory state (line
2.26).

A transient fault can occur in an application thread, causing
it to produce incorrect results or stalling it indefinitely (i.e.,
it becomes a zombie thread). On the one hand, incorrect
results are detected when write-sets are compared and read-
sets are validated by the committers. On the other hand, a
zombie thread is detected by a timeout while waiting for
the commit request from all threads in a group (line 2.29).
Speculative threads do not write to shared memory; only the
committers can change it. Memory protection mechanism is
used to enforce read-only access for speculative threads. For
making the committer threads resilient to transient faults, they
execute the same steps in an independent manner. Then they
compare their outcomes during the coordination phases. Even
in this case, a timeout mechanism is used to detect possible
transient faults (e.g., line 2.24).

SoftX requires that speculative threads in a group have
identical inputs to produce identical behavior. In other words,
their actions must be deterministic [8]. To do that, we scope out
any form of non-determinism that could result in possible false
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Fig. 2. Transactional throughput of SoftX on x86.

transient faults. For example, if a transaction calls random
function, we extract the generation of the random number from
the transaction’s body, and make this number available for all
speculative threads.

Another common issue that SoftX has to cope with is the
so called timestamp extension [16]. This consists of extending
the original timestamp of a transaction when it observes that
its read-set is still valid but the timestamp has been increased
by other commits. This way, subsequent read operations could
save the overhead of re-validation if there is no change in the
global timestamp (i.e., no transactions committed in between
those two read operations).

In SoftX, speculative threads act independently, thus some
threads could extend the timestamp rather than others. Ex-
tending the timestamp synchronously significantly impacts
performance. Therefore, we made the decision of extending
the timestamp asynchronously. In case some speculative thread
arrives at its commit phase with a timestamp different from
others and different results, we consider it as faulty execution
(due to a transient fault) and we abort the entire group. We
adopt this “conservative” behavior because the committers
cannot distinguish between the case in which the timestamp
has been corrupted by a transient fault from the case in which
the speculative thread missed extending its timestamp. (We
also explored the solution removing the timestamp exten-
sion feature. However, the resulting performance was worse
than keeping the timestamp extension and aborting the entire
group.)

Another important aspect is the methodology for allocating
memory slots within a transaction. When a new memory slot is
allocated, each speculative thread acquires a different memory
location because its area differs from the areas allocated by
other threads, even though those areas correspond to the same
logical object. This results in different values (i.e., memory
addresses) in the group’s write-sets, and therefore, all members
will never have identical write-sets. To overcome this problem
and make the validation procedure feasible, we mark each new
memory location with a logical reference, and we compare the
value of the location instead of the address. On the contrary,
memory deallocation is managed by committers, instead of
speculative threads.

V. EXPERIMENTAL RESULTS

SoftX is implemented on two architectures: shared-bus
architecture represented by x86, and message-passing archi-
tecture represented by Tilera TILE-Gx [18].

For x86, we conducted our experiments on a 48-core
machine, which has four AMD OpteronTM Processors (6164
HE), each with 12 cores running at 1700 MHz, and 16 GB of
memory. The machine runs Ubuntu Linux Server 12 LTS 64-
bit. For Tilera, we used a 36-core machine of the Tilera TILE-
Gx family. This hardware is commonly used as an accelerator
or an intelligent network card. Each core is a full-featured
64-bit processor (1.0 GHz), with two levels of caches, 8 GB
DDR3 memory, and has a non-blocking mesh that connects
cores to the Tilera 2D-interconnection system.

We implemented our solution using C++ in Rochester STM
(RSTM) library [15]. RSTM uses platform-specific assembly
instructions. Therefore, we ported its original implementation
to support Tilera TILE-Gx family.

In order to assess the performance of SoftX, we used
three competitors. The first is the original, non transient
faults tolerant, version of NOrec [16]; the second is an SMR
approach [11], typically used in transactional replication; and
the third is PBFT [6] which represents a byzantine fault-
tolerant system.

We implemented an SMR system in a centralized setting
inspired by [11]. In this system, each client (i.e., application
thread) reserves a core and sends its requests to replicas (or
nodes) via shared memory queues/message passing system. A
replica represents a partition of resources in terms of memory
and corses. Specifically, each reserves a core for network com-
munication and a variable number of cores to execute transac-
tional requests concurrently. According to the SMR paradigm,
clients send their transactional requests to an ordering layer
that is responsible for ordering those requests and deliver to
replicas. With the purpose of keeping consistent the state on all
replicas, each must execute transactional requests in the order
defined by the ordering layer. We implemented this order by
tagging all client requests with the value of a single shared
counter using the atomic fetch-and-increment instruction. For
respecting the order at the concurrency control, usually, in
SMR systems, each replica executes requests sequentially. We
overcome this lack, developing a replica concurrency control
that supports parallel execution but, at the same time, it
enforces the requests’ order. Each client also acts as a voter that
collect replies from replicas. We added the voter because also
this approach has been designed for avoiding transient fault.
We only assume that a transient fault cannot happen when
the atomic fetch-and-increment instruction is called. PBFT is
implemented similarly but it executes transactions sequentially
and has a higher overhead in the ordering layer according to
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Fig. 3. Transactional throughput of SoftX on Tilera.

PBFT original design.

We tested SoftX on three well-known benchmarks in
transaction processing such as Bank, List and TPC-C [17].
Bank mimics operations of a monetary applications. List is
a micro benchmark that represents the list data structure.
List operations pay the cost of traversing the data structure,
increasing the read-set size and thus the execution time.
TPC-C is the classical representative of an online transaction
processing system based on warehouses and orders that clients
perform on shared items. These benchmarks expose different
transaction execution time: in Bank, transactions are very short.
In List, transactions are longer and conflict rate is higher. While
in TPC-C, transactions are the longest because they involve
more computation. They differ also in terms of transaction
profiles. Bank has one profile for writing bank accounts (i.e.,
the write transaction) and one for retrieving informations from
bank accounts (i.e., the read-only transaction). List has three
operations representing the list data structure insert, delete and
contains (read-only) operations. TPC-C has five transaction
classes: three of them are write transactions while two are read-
only transactions. In this evaluation study, we configured Bank
for generating 65% of write transactions, List with uniform
distribution between the three operations, and TPC-C with its
default configuration. All data points plotted are the average
of five repeated samples.

As for STM configurations, in the SMR approach we fixed
the number of replicas to three because it matches the size that
we used in SoftX as groups’ size. Moreover, having only three
replicas does not reduce significantly the resource available
per replica. For PBFT, we used four replica which is the
minimum number of replica required. BFT systems requires
3f + 1 replicas to tolerate f faults. In the following plots we
measure the transactional throughput while we increase the
number of groups serving transactions. As a result, when we
report the results on 10 groups, it means that the system is
running 30 threads. Finally, the number of committer threads
is always fixed at three.

A. Shared-bus architecture

Figure 2 shows the results on x86 shared-bus architecture.
In all benchmarks, the shared-bus represents a bottleneck for
replication-based systems. SoftX minimal synchronization im-
proved its performance compared to replication-based systems.
It also reduced the overhead of SoftX compared to non faults
tolerant system.

Figure 2(a) shows the results with Bank benchmark. Perfor-
mance of NOrec is 4× better than SoftX. This large overhead
is due to Bank very small transactions which magnify the
synchronization overhead of SoftX. Plus, NOrec does not have
any mechanism for being resilient to transient faults. However,
when compare to the SMR approach, SoftX does not suffer
from the overhead of global ordering and in-order processing,
thus outperforming it by 1.96× on average. Compared to
PBFT, SoftX outperforms PBFT by 6.3× on average. PBFT
has higher overhead to reach consensus and also executes
requests sequentially.

Figure 2(b) shows the results with List micro benchmark.
As the length of list’s transactions is longer and the contention
is higher, the additional overhead due to multiple synchroniza-
tion points needed for tolerating possible transient faults is
less evident than in Bank. Thus, SoftX overhead is reduced to
1.15× on average compared to NOrec. When the contention
in the system increases due to multiple threads working,
performance becomes more comparable (65% overhead) be-
cause SoftX exploits the presence of committer threads which
reduce hardware contention and increase system’s scalability.
As a general trend, SoftX performs better than SMR. The
reason is mostly related to the in-order processing and also
the final voting that clients have to perform at the end of
each transaction. SoftX optimizes this process: speculative
threads process in parallel to committer threads. This way
the transaction execution in the system is overlapped with
the commit phase, thus reducing the stalls that happen on the
SMR approach. SoftX outperforms SMR by 1.23× on average.
SoftX outperforms PBFT by 3.89× on average.

Figure 2(c) shows the results with TPC-C benchmark. Here
the benchmark is complex and transaction are the longest
compared to List and Bank. But contention in TPC-C is
lower than List as we are using 100 warehouses. In List,
all transactions traverse the same nodes of the list which
increase the conflict ratio. NOrec outperforms SoftX by 1.1×
on average. SoftX gains up to 1.54× compared to SMR and
3.27× compared to PBFT.

Summarizing, SoftX overhead is acceptable for application
that has high contention (e.g., List) and/or long transactions
(e.g., TPC-C).

B. Message-passing architecture

Figure 3 shows the results on the Tilera message-passing
architecture. With the more communication bandwidth, all
fault-tolerant approaches improve their performance.
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Figure 3(a) shows the results with Bank benchmark. Per-
formance of NOrec is now 1.8× better than SoftX compared
to 4× in shared-bus results. The message-passing network in-
creased the communication bandwidth between different cores
and now synchronization overhead is distributed over multiple
links. For the same reason, replication-based approaches over-
head is decreased as it is designed for exploiting networking
capabilities. SoftX outperforms SMR by 0.94× on average.
And SoftX outperforms PBFT by 4.18× on average.

Figure 3(b) shows the results with List micro benchmark.
The overhead of SoftX is farther decreased given List high
contention nature plus message-passing higher bandwidth.
SoftX overhead is reduced to 61% on average compared to
NOrec. SoftX outperforms SMR by 1.02× on average. SoftX
outperforms PBFT by 3.37× on average.

Figure 3(c) shows the results with TPC-C benchmark.
Given the TPC-C’s long transactions, SoftX overhead is min-
imal to 12% only on average compared to NOrec. SoftX is
33% better compared to SMR and 1.88× better compared to
PBFT.

In summary, having a message-passing architecture, syn-
chronization and communication overhead is reduced signifi-
cantly. Now, the network bandwidth does not represent a bottle
neck in most of the benchmark. The benefits of concurrent
execution in SoftX and SMR approach is evident compared to
PBFT which does not scale with increased number of threads.
SoftX still outperforms replication-based approaches.

SoftX performs better than replication-based approaches
since it requires less data transfer between system components.
State-machine replication is designed for distributed systems
which has a network. In x86 centralized system, using memory
queues as a network saturates the shared bus and reduce the
performance significantly. Moving the implementation to a
message-passing architectures reduces replication-based sys-
tems’ overhead however, even in this case, SoftX outperforms
the other competitors.

VI. CONCLUSIONS

SoftX confirms that it is possible providing a concurrency
control protocol that makes transactional applications resilient
to transient faults, without giving up high performance. We
leveraged the huge amount of computational resources avail-
able in recent multicore architectures, as well as a protocol
that limits the overhead by combining speculative execution
and dedicated committer threads. Our results shows lower
overhead compared to replication-based approaches even with
an optimized state-machine replication approach. SoftX is also
suitable for current shared-bus architectures as well as the
emerging message passing architectures.
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