
Automated Data Partitioning for
Independent Distributed Transactions

Alexandru Turcu
Virginia Tech
talex@vt.edu

Roberto Palmieri
Virginia Tech

robertop@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

Abstract
Granola is a recently proposed transactional execution pro-
tocol that employs a novel timestamp-based synchroniza-
tion for executing certain classes of distributed transactions.
However, Granola has two critical drawbacks. A) It requires
users to manually define a data partitioning scheme and
choose the appropriate transaction primitive. We seek to au-
tomate this process. We employ an existing graph-based al-
gorithm (Schism) for partitioning transactional data, and ex-
tend it to be compatible with the additional insights and re-
quirements of the Granola protocol. B) Granola requires a-
priori knowledge of data location for routing transactions to
repositories. We develop a routing mechanism based on ma-
chine learning to overcome this issue.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; H.2.4 [Systems]:
Transaction processing

Keywords Data Partitioning, Transactional Data Store

1. Introduction
Distributed transactional storage systems nowadays require
increasing isolation levels, scalable performance, fault-
tolerance and a simple programming model for being easily
integrated with transactional applications.

Cowling and Liskov in [1] recently proposed a new model
for scalable distributed transactional storage, called Granola,
in which transactions are processed locally and only one
round of communication between the user and system is
needed. Additionally, this approach exploits the presence
of multiple machines, where possible, to process indepen-
dent portions of the same transaction in parallel on different

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware 2013 Posters and Demos Track, December 9-13, Beijing, China.
Copyright c© 2013 ACM 978-1-4503-2549-3. . . $15.00.

nodes, in order to overlap their computation (named inde-
pendent transactions).

However, even though the Granola model is appealing, its
assumptions restrict its applicability mainly because: i) data
needs to be well partitioned such that transactions can be ex-
ecuted according to the independent transaction paradigm,
namely split into multiple execution flows running in paral-
lel on different partitions; and ii) users executing the trans-
actions require a-priori knowledge of partitions accessed by
submitted transactions for contacting the right nodes. This
model, as is, cannot be considered as a transparent frame-
work for the application developer because it requires sig-
nificant manual effort - the developer must understand the
application business logic and define partitions manually.

Motivated by these problems, we present an automatic
framework to enable the exploitation of advantages offered
by the Granola model on general-purpose distributed trans-
actional applications. Specifically, we extend an existing
graph-based data partitioning algorithm, Schism [2], to be
compatible with the additional insights and requirements of
the Granola model (Section 2). Additionally, we solve the
problem of routing transactions, developing a new efficient
mechanism based on machine learning that overcomes the
lack of knowledge about the nodes storing objects. We also
provide simple transactional abstractions to the programmer
for interfacing with the distributed system, making our pro-
posal easily pluggable for existing applications (Section 3).

Preliminary results of the framework show its capability
to organize data for maximizing the throughput of transac-
tions running in independent mode. Transactional through-
put on TPC-C is comparable to the original Granola, where
partitioning and routing are done manually.

2. Partitioning Process
The first phase in our partitioning workflow performs static
analysis and byte-code rewriting on all transactional routines
in the workload. This step serves three purposes. Firstly, it
collects data dependency information which is later used to
ensure the proposed partitioning schemes are able to comply
to our chosen one-round transactional model (no data depen-
dencies are allowed across partitions). Secondly, it extracts

summary information about what operations may be per-
formed inside each atomic block, to determine whether an
atomic block is abort-free or read-only. Finally, each trans-
actional operation is tagged with a unique identifier to help
make associations between the static data dependencies and
the actual objects accessed at run-time.

The second phase is collecting a representative trace for
the current workload, which includes a record for every
transactional operation performed. Each record contains the
transaction identifier, the type of operation, the affected ob-
ject, and the unique identifier of the operation, as was tagged
in the previous step.

The next three phases are similar to the corresponding
phases in Schism [2]. The graph representation phase pro-
cesses the previously collected workload trace and creates
a graph where nodes represent objects and edges represent
transactions. This graph is governed by the same rules as
in Schism. Additionally, edge weights are updated to re-
flect the new transaction models, along with their restric-
tions and desirability. The graph is then partitioned using
METIS [3] in the partitioning phase. The result from this
step is a fine-grained association from object identifiers to
partitions. Next, a concise model representing these associ-
ations is created using WEKA classifiers in the explanation
phase.

The final phase is concerned with transaction routing
and model selection. While in Schism routing information
was easily extracted from the WHERE clause of SQL queries
when available, our atomic block model for expressing DTM
transactions prohibits using a similar approach. We thus in-
troduce a machine-learning based routing phase. The data
used to train this classifier is derived from the workload
trace, using the object-to-partition mapping. Finally a trans-
action model is selected for every transaction class depend-
ing on the number of partitions it executes on, it’s need to
abort, and whether it writes any objects (or is read-only).

3. Run-Time Behavior
During the previously described process, we train two sets
of classifiers. The first set is tasked with object-to-partition
mapping. These classifiers determine the object placement,
and we will call them the placement classifiers. While it may
reduce the quality of the resulting partitions, misclassifica-
tion at this stage is mostly harmless, since it is the classifier
that dictates the final object placement.

The second set of classifiers are the routing classifiers.
They are used on the client side (i.e., in the thread that
invokes the transaction) to decide which nodes to contact
for the purpose of executing the current transaction. Due to
the transactions being expressed as regular executable code,
this information is not readily available until the code is run.
Inputs for these classifiers are the parameters passed to the
transaction. Misclassification at this stage has the potential to
be harmful, as a misrouted transaction may not have access

to all objects needed to execute successfully. We address this
situation by allowing such a misrouted transaction to abort
and restart on a larger set of nodes.

Finally, we do not require users to be aware of the par-
titioning scheme or the transaction execution model when
writing transaction code. Thus, users should be able to write
a single atomic block, and the system would make sure the
appropriate code branches will execute at the corresponding
partitions. In our prototype implementation, the same code is
expected to execute properly on all partitions. This requires
a defensive programming style, which checks that the return
value of certain object open operations is not null. While
this is a good practice anyway for error handling, our cur-
rent implementation explicitly uses null references to denote
an object is located at another partition.

4. Evaluation
Our implementation is based around Hyflow2 [4], a JVM-
based DTM framework written in Scala. We evaluate our
partitioning process using TPC-C. The workload was con-
figured with between 3 and 15 warehouses, and traces of
different lengths were obtained.

Figure 1. Transactional throughput, with 3 warehouses.

Figure 1 shows transactional throughput of a 3-warehouse
workload, partitioned across three repositories. Throughput
is high, comparable with the original Granola implementa-
tion, where partitioning and routing is done manually.

Acknowledgements
This work is supported in part by US National Science Foun-
dation under grants CNS 0915895, CNS 1116190, CNS
1130180, and CNS 1217385.

References
[1] J. Cowling and B. Liskov. Granola: low-overhead distributed

transaction coordination. USENIX ATC’12.

[2] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a
workload-driven approach to database replication and partition-
ing. VLDB 10.

[3] G. Karypis and V. Kumar. Metis - serial graph partitioning and
fill-reducing matrix ordering, version 5.1, 2013.

[4] A. Turcu, B. Ravindran, and R. Palmieri. Hyflow2: a high
performance distributed transactional memory framework in
scala. In PPPJ ’13.

