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Abstract
We present SMASH, a high performance active replication
approach for fault-tolerant distributed transactional systems.
The active replication paradigm allows transactions to exe-
cute locally, costing them only a single network communi-
cation step during transaction execution. Shared objects are
replicated across all sites, avoiding remote object accesses.
Replica consistency is ensured by an optimistic atomic
broadcast layer that total-orders transactional requests, while
guaranteeing minimal message reordering. Additionally, a
local multi-version concurrency control protocol efficiently
enforces a commit order equivalent to transactions’ delivery
order, while read transactions are executed in parallel.

Categories and Subject Descriptors C.2.4 [Computer Com-
munication Networks]: Distributed databases; H.2.4 [Database
Management]: Transaction processing

Keywords Transactions, Memory, Fault-Tolerance

1. Introduction
Fault-tolerance is a strongly desirable property of transac-
tional systems. Object replication provides fault-tolerance
guarantees, but suffers from some trade-offs. On the one
hand, partially replicating shared objects across remote
nodes burdens transactions with expensive network commu-
nication steps, resulting in long execution times and possibly
low performance. On the other hand, full replication allows
transactions to execute fully locally, which yields low execu-
tion times, but requires an ordering protocol (Atomic Broad-
cast [3] or AB) that ensures a total order among the trans-
actional requests issued by clients. The latter approach, also
called State Machine Replication, is usually not adopted in
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transaction processing due to the high overhead of globally
ordering transactions before their execution. AB offers two
primitives for broadcasting a message (used by clients) and
for delivering an ordered transaction (used by replicas). An
improved version of AB, called Optimistic Atomic Broad-
cast (OAB) [2], has been recently proposed. OAB enriches
AB with an additional notification, called optimistic deliv-
ery, which is sent by the ordering layer to the replicas after
the transaction’s broadcast, but prior to the notification of its
final order. OAB’s order is generally not reliable. However,
the optimistic delivery can be exploited by the replicas’ con-
currency control mechanism for activating the transactions
by guessing the final order (speculatively), anticipating pos-
sibly useful work, in case the ordering layer does not reorder
any transaction during the coordination phase.

In this paper we present SMASH, a state-machine replica-
tion approach for building high performance fault-tolerant
transactional systems (Section 2). We leverage two main
building blocks. The first is an optimized ordering layer that
implements OAB, which ensures high throughput and min-
imal reordering. The second is a speculative concurrency
control mechanism that uses a single thread for processing
write transactions, as well as a pool of threads for executing
read-only transactions in parallel to write transactions, ex-
ploiting object multi-versioning. Both these blocks exploit
multiple nodes for replicating the transactional state. Due
to the multiple committed versions that are stored for each
shared object, read-only transactions run fully locally at each
node, yielding high performance. Write transactions are ex-
ecuted fast, without blocking operations, assuming that the
optimistic order is likely confirmed by the OAB service.

2. SMASH
We consider a classical distributed system model consisting
of a set of processes (replicas) that communicate via mes-
sage passing. Processes may fail according to the fail-stop
(crash) model. In order to reach consensus [3], we assume
that the majority of nodes are always correct. We assume
the full replication model where each replica maintains the
whole shared data set.



Clients wrap transactions in transaction requests. They
are broadcast using the OAB service to all the replicas. After
that, clients simply wait until the feedback of the submitted
transaction is issued by the system. A client’s request is first
sent to the ordering layer (Section 2.1), and subsequently to
the replica’s concurrency control mechanism (Section 2.2).
At each node, transactions are processed and committed
according to the final order notified by the OAB service.

2.1 Optimized OAB service
The key idea of our optimized OAB service is exploiting
the observation that, during a crash-free execution, while the
nodes are establishing the consensus of messages, the proba-
bility of a mismatch between the optimistic and relative final
order of the message is minimal. A recent effort has pro-
posed a high throughput AB layer [1]. Here, a replica creates
a batch of client requests and distributes it to other replicas.
The receiver replicas store the batch of requests and send an
ack to all other replicas. When the replicas observe a major-
ity of acks for a batch, it is considered as stable. The leader
(i.e., the node currently constructing the ordering) then pro-
poses an order (containing only the batch IDs) for the non-
proposed stable batches, for which, the other replicas reply
with their agreement i.e., accept messages. When a majority
of agreement is reached, each replica considers it as decided.
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Figure 1. % of out-of-order optimistic w.r.t. final delivery.

We designed an architecture that minimizes the likelihood
of message reordering by extending [1]. When the leader
sends the proposed order for a batch, replicas use it for trig-
gering the optimistic delivery. In order to minimize inver-
sions, replicas trigger an optimistic delivery only when: 1)
they receive a propose message; 2) all request batches of the
propose message have been received; and 3) all previous in-
stances have already been optimistically delivered. Figure 1
shows results for failure-free and faulty runs.

2.2 Speculative Concurrency Control (SCC)
SCC exploits multi-versioned memory for activating read-
only transactions in parallel to write transactions that are, in
contrast, executed in a single thread. Single-thread process-
ing ensures that when a transaction completes its execution,
all the previous transactions are executed in a known order.
Additionally, no atomic operations are needed for manag-

ing locks or critical sections. As a result, write transactions
are processed faster and read-only transactions do not suffer
from otherwise overloaded hardware bus (due to CAS oper-
ations and cache invalidations caused by spinning on locks).

When the final order of a transaction is established, if it
is completely executed by then, it is validated for detecting
the equivalence between its actual serialization order and
the final order. If the processing order is equivalent to the
OAB order, then the transaction is committed; otherwise it
is aborted and restarted.

3. Preliminary Results
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Figure 2. Performance with read workload.

We implemented the two components of SMASH in Java.
Figure 2 reports initial results using the TPC-C benchmark.
Our test-bed consists of 8 nodes, each of which is a 64-
core AMD Opteron machine, interconnected using a 1Gbps
switched network. We contrast SMASH with SCORe [4],
a state-of-the-art partial replication approach. We config-
ured TPC-C to generate different percentages of read-only
transactions. Results reveal SMASH’s effectiveness in over-
lapping transaction execution with OAB’s actions. SMASH
outperforms SCORe with 8 replicas by up to 10×. SMASH’s
effectiveness is particularly evident here, as SCORe pays
the cost for looking-up remotely accessed objects, unlike
SMASH, which executes transactions locally.
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