
Reducing Aborts in Distributed Transactional Systems
through Dependency Detection

Bo Zhang
Virginia Tech

alexzbzb@vt.edu

Binoy Ravindran
Virginia Tech

binoy@vt.edu

Roberto Palmieri
Virginia Tech

robertop@vt.edu

ABSTRACT
Existing distributed transactional system execution model
based on globally-consistent contention management poli-
cies may abort many transactions that could potentially
commit without violating correctness. To reduce unneces-
sary aborts and increase concurrency, we propose the dis-
tributed dependency-aware (DDA) model, which adopts dif-
ferent conflicting resolution strategies for different transac-
tions. In the DDA model, the concurrency of transactions is
enhanced by ensuring that read-only and write-only transac-
tions never abort, through established precedence relations
with other transactions. Non-write-only update transactions
are handled through a contention management policy. We
identify the inherent limitations in establishing precedence
relations in distributed transactional systems and propose
their solutions. We present a set of algorithms to support
the DDA model, then we prove the correctness and per-
missiveness of the DDA model and show that it supports
invisible reads and efficiently garbage collects useless object
versions.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming; H.2.4 [Database
Management]: Transaction processing; C.2.4 [Computer
Systems Organization]: Distributed Systems

General Terms
Algorithms, Transactions, Theory

Keywords
Synchronization, Distributed Transactional Systems, Depen-
dency Aware

1. INTRODUCTION
The distributed transactional system’s (DTS) processing

model consists of a network of nodes that communicate by

.

message-passing links and cooperate with the purpose of
running transactions on common shared data. Those data
are scattered among nodes and, according to the specific
adopted model, they can be replicated (i.e., at least one
more version of the same object is available in the system)
or purely distributed (i.e., one version per object is main-
tained by the entire system).

A common classification divides DTS protocols according
to their transaction execution flow. The first is control-
flow [19, 18, 24, 4], in which shared objects are perma-
nently stored at predefined nodes and transactions start
from a node and then move their execution flow onto other
nodes depending on the accessed objects. The second is
data-flow [9, 13], which conversely allows objects to mi-
grate among nodes, depending on the sequence of transac-
tion commits, while transactions remain immobile and con-
tact other nodes (i.e., object owners) for obtaining objects.
In the latter approach, when a transaction successfully com-
mits, the ownership of the updated object is transferred to
the node that is managing the transaction commit.

Due to the fixed and pre-defined owner of each object,
control-flow protocols can rely on a deterministic, consistent
hash function [11] which allows transactions to locally com-
pute the node responsible for maintaining the object with-
out involving any inter-node communication. However, it is
clear from the deterministic nature of this function that it
does not allow changing the object ownership or biasing the
initial object location. Without this feature, the distributed
concurrency control cannot optimize the object location de-
pending on the workload at hand. Other upper layers can
provide this feature, at the cost of paying overheads [10].
Conversely, this problem is inherently solved in the data-
flow approach, where objects can be moved to nodes that
more frequently request and update such objects. Moreover,
if an object is shared by a group of topologically-close clients
that are far from the object’s home, moving the object to
the clients can reduce future communication costs. In the
rest of the paper, we focus on the data-flow execution model.

The core of the design of a DTS based on data-flow is
composed of two elements. The first element is the con-
flict resolution strategy. Two transactions conflict if they
access the same object and one access is a write. Most ex-
isting implementations adopt a conflict resolution strategy
that aborts one transaction whenever a conflict occurs—e.g.,
a contention management module [8]. The second element
is the distributed cache-coherence protocol. When a trans-
action attempts to access an object in the network, the
distributed cache-coherence protocol must locate the latest

cached copy of the object, and move a read-only or writable
copy to the requesting transaction.

Most of the past works on DTS based on data-flow [2,
9, 17, 25] focus on the design of cache-coherence proto-
cols, while assuming a contention-management-based con-
flict resolution strategy. While easy to implement, such a
contention management approach may lead to significant
number of unnecessary aborts, especially when high concur-
rency is preferred—e.g., for read-dominated workloads [1].
On the other hand, none of the past works consider the de-
sign of conflict resolution strategies to increase concurrency
under a general cache-coherence protocol.

In this paper, we approach this problem by exploring how
we can increase concurrency in a DTS. Our work is moti-
vated by the past works on enhancing concurrency by estab-
lishing precedence relations among transactions in multipro-
cessor systems [7, 12, 21]. A transaction can commit as long
as the correctness criterion is not violated by its established
precedence relations with other transactions. Generally, the
precedence relations among all transactions form a global
precedence graph. By maintaining the precedence graph in
time and keep it acyclic, the DTS efficiently avoids unnec-
essary aborts.

We propose the distributed dependency-aware (DDA) model1,
which absorbs the advantages of aforementioned two strate-
gies. We identify the two inherent limitations of establishing
precedence relations in DTSs. At first, there is no central-
ized unit to monitor precedence relations among transac-
tions in distributed systems, which are scattered in the net-
work. Each transaction should first observe the status of the
precedence graph before the next operation. Hence, a large
amount of communication cost between transactions is un-
avoidable. In the DDA model, we design a set of algorithms
to avoid frequent inter-transaction communications. Here,
read-only and write-only transactions never abort by keep-
ing proper versions of accessed objects. Each transaction
only records precedence relations based on its local knowl-
edge. Our algorithms guarantee that, when a transaction
reads or writes an object based on its local knowledge, the
underlying precedence is acyclic. On the other hand, we
adopt a contention management policy to handle non-write-
only update transactions (i.e., those transaction involving
both read and write operations). This strategy ensures that
an update transaction is efficiently processed when it po-
tentially conflict with another transaction, and keeps the
system making progress.

Second, when a transaction commits, it should insert a
new version for each object it writes to. Since objects are
distributed, the node executing the transaction may not hold
all the objects the transaction requires to access. Hence,
a transaction cannot insert those versions as in a central-
ized system because each node has its independent notion
of the time and therefore different objects may observe dif-
ferent committing times for the same transaction. Such
phenomenon can cause a transaction make wrong decision
in deciding precedence relations, and introduce unnecessary
aborts or violate correctness. We design a set of algorithms
to efficiently detect and update precedence relations and en-
sures that even if a wrong detection occurs, the operations
of related transactions are adjusted to accommodate such
mistake without violating correctness.

1A preliminary version of this paper appeared as Brief An-
nouncement in [26]

The DDA model satisfies the following desirable proper-
ties:
- It satisfies opacity, the correctness criterion defined in [7].
- In order to capture its capability of reducing aborts, we de-

fine the strong multi-versioned (MV)-permissivenes prop-
erty, which restricts the set of possible aborted transac-
tions.

- It satisfies real-time prefix (RtP) garbage collection (GC),
which enables the model to keep only the shortest suffix
of versions that might be needed by live read-only trans-
actions.

- It also supports invisible reads, which is highly desired in
DTS.
The paper makes the following contributions.
1. We present the DDA model for DTSs. This is the

first distributed model, which relaxes the restriction of
contention-management-based conflict resolution strate-
gies.

2. We reveal the inherent limitations of establishing prece-
dence relations in DTSs, and propose their solutions.

3. We present algorithms of read/write operations for
read-only, write-only and non-write-only update trans-
actions in the DDA model.

4. We prove that the DDA model satisfies: i) opacity; ii)
strong MV-permissiveness; iii) RtP GC; iv) invisible
reads.

The rest of the paper is organized as follows. We present
the preliminaries and system model in Section 2. We for-
mally present the DDA model and propose the solutions of
its two inherent limitations in Section 3. We present algo-
rithms of read/write operations and analyze them in Sec-
tion 4. The paper concludes in Section 5.

2. PRELIMINARIES AND SYSTEM MODEL

2.1 Programming Model
For the sake of generality and following the trend of [14],

we adopt the programming model of software transactional
memory (STM) [23] and its natural extension to distributed
systems (i.e., DTM) [3, 15]. STM allows the programmer to
simply mark a set of operations with transactional require-
ments as an “atomic block.” The STM framework transpar-
ently ensures the block’s transactional properties (i.e., atom-
icity, isolation, consistency). This offloads the complexity of
managing concurrent requests from the programmer to the
STM framework.

2.2 Distributed transactions
A distributed transaction performs operations on a set of

shared objects in a distributed system, where nodes commu-
nicate by message-passing links. Let O := {o1, o2, . . .} de-
note the set of shared objects. Each transaction has a unique
identifier (id) from a set of transactions T := {T1, T2, . . .}.
A transaction is invoked by a certain node (or process) in the
distributed system. When there is no ambiguity, the nota-
tion of Ti may indicate either a transaction or the node that
invokes the transaction. The status of a transaction may
be one of the following three: live, aborted, or committed.
Retrying an aborted transaction is interpreted as creating
a new transaction with a new id. However, when a trans-
action retries, it preserves the original starting timestamp
as its starting time. A transaction is a read-only transac-
tion if all its operations are read. Otherwise it is an update

transaction.
To understand the elements of the design to support the

transactional API in a distributed system, we consider Her-
lihy and Sun’s data-flow model [9]. In this model, transac-
tions are immobile (running at a single node), but objects
move from node to node. Synchronization is optimistic: a
transaction commits only if no other transaction has ex-
ecuted a conflicting access. In the data-flow model, each
node has a proxy that provides interfaces used by the trans-
actional application to proxies of other nodes. When a trans-
action at node A requests a read/write access to an object
o, its proxy first checks whether o is in its local cache; if not,
the proxy invokes a cache-coherence protocol to fetch the
object o in the network. The node B, which holds o, checks
whether it is in use by an active local transaction when it re-
ceives the request for o from A. If not, the proxy of B sends
o to A and invalidates its own copy. If so, the proxy invokes
some conflicting resolution strategy to mediate conflicting
access requests for o.

When a transaction attempts to read/write a remote ob-
ject, the cache-coherence protocol is invoked by the transac-
tion proxy to locate the current cached copy of the object,
move a read-only or writable copy to the requesting transac-
tion’s local cache. Specifically, in this paper, we assume an
underlying distributed cache-coherence protocol CC which
satisfies the following properties:

1. When the proxy of transaction Ti attempts to locate
an object in the network, CC is invoked to carry Ti’s
read/write request to the transaction which holds the
exclusive writable copy of the object in a finite time
period.

2. When a transaction Tj makes the decision to send a
read-only copy or the writable copy of the object to
Ti, CC is invoked. CC must guarantee that the re-
quested copy of the object is moved to the requesting
transaction in a finite time period2.

3. At any given time, CC must guarantee that there ex-
ists only one writable copy of each object in the net-
work. In other words, an object can only be written
by a single transaction at any given time.

2.3 Correctness criterion
A transaction history is the sequence of all events issued

and received by transactions in a given execution, ordered
by the time they are issued. Hence, a transaction history
describes a computation by ordering the sequence of all its
events. A history H is well-formed if no transaction both
commits and aborts, and no transaction takes any step after
it commits or aborts. Two histories H1 and H2 are equiva-
lent if they contain the same transaction events in the same
order. Formally, let H|Ti denote the longest subsequence
of history H that contains only events issued/received by
transaction Ti. Then histories H1 and H2 are equivalent
if for any transaction Ti ∈ T , H1|Ti = H2|Ti. A history
is complete if it does not contain live transactions, i.e., the
status of each transaction is either committed or aborted.
If a history H is not complete, we can build a well-formed
complete history Complete(H) by aborting the live trans-
actions in H. Specifically, we can obtain Complete(H) by
adding a number of abort events for live transactions in H.

2We assume a partially synchronous distributed system [16]
where a message sent from one node eventually is delivered
to the destination node.

In this paper, we assume that all histories are well-formed.
The real-time order of transactions is defined as follows:

for any two transactions {Ti, Tj} ∈ H, if the first event of
Tj is issued after the last event of Ti (a commit event or
an abort event of Ti), then we denote Ti ≺H Tj . In other
words, relation ≺H represents a partial order on transactions
in H. Transactions Ti and Tj are concurrent if Ti ⊀ Tj

and Tj ⊀ Ti, i.e., the transaction events of Ti and Tj are
interleaved. A history H is sequential if no two transactions
in H are concurrent [7]. A sequential history H is legal if it
respects the sequential specification of each object accessed
in H. Intuitively, a sequential history is legal if every read
operation returns the value given as an argument to the
latest preceding write operation that belongs to a committed
transaction. For a sequential history H, a transaction Ti ∈
H is legal in H if the largest subsequence H ′ of H is a legal
history, where for every legal transaction Tk ∈ H ′, either 1)
k = i, or 2) Tk is committed and Tk ≺H Ti.

We adopt the opacity correctness criterion proposed by
Guerraoui and Kapalka [7], which defines the class of histo-
ries that are acceptable for any DTS. Specifically, a history
H is opaque if, according to the above definitions, there ex-
ists a sequential history S, such that: 1) S is equivalent to
Complete(H); 2) S preserves the real-time order of H; 3)
every transaction Ti ∈ S is legal in S.

3. DISTRIBUTED DEPENDENCY AWARE
MODEL

3.1 Motivation
In this section we propose the distributed dependency-

aware (DDA) model. The DDA model differs from Her-
lihy and Sun’s execution model [9] based on the globally-
consistent contention management (GCCM) model in the
way that it resolves read/write conflicts on shared objects.
In the GCCM model, a contention manager module is re-
sponsible for mediating among conflicting accesses to a shared
object. A running transaction could only be aborted by
another transaction with a higher priority. Whenever two
transactions concurrently need exclusive access to the same
shared object, only one of these transactions is allowed to
continue, and the other is immediately aborted (or at least
suspended).

Consider the scenario in Figures 1 and 2. We follow the
style of [22] to depict transaction histories, which is also
adopted in [12]. Filled circles correspond to write operations
and empty circles represent read operations. Transactions
are represented as polylines with circles (write or read oper-
ations). Each object oi’s state in time domain corresponds
to a horizontal line from left to right. A commit or an abort
event is indicated by letter C or A, respectively. The initial
value of object oi is denoted by o0i , and the value written to
oi by the nth write is denoted by oni .

Figure 1 depicts an execution of m transactions under the
GCCM model. Specifically, we assume that the Greedy con-
tention manager [6] is employed, which assigns priority to
a transaction based on the time it begins. A transaction
begins earlier has the higher priority. Hence, for m trans-
actions in Figure 1, we have T1 ≺G T2 ≺G . . . ≺G Tm,
where “Ti ≺G Tj” represents that Ti’s priority is higher than
Tj ’s under the Greedy manager. In a DTS, a transaction’s
request is forwarded by the underlying cache-coherence pro-

Figure 1: The GCCM model: only T1 commits under
the Greedy contention manager.

Figure 2: The DDA model: all transactions commit.

tocol. We assume that o1 first receives Tm’s request, al-
though it is the latest transaction that sends the request
to o1 (e.g., it may be the nearest request to o1). In this
scenario, o1 is first moved to T1 from its initial place at t1.
In the same way, at time tk, the DTS knows that Tm−k+1

requests a write access to o1. Further, we assume that at
time tk (2 ≤ k ≤ m), Tm−k+2 has not committed. Hence,
at time tk, Tm−k+1 and Tm−k+2 conflict on o1 (note that
the second operation of each transaction is a read). Since
Tm−k+1 ≺G Tm−k+2, Tm−k+2 is aborted for each k ∈ [2,m].
At last, only T1 commits.

Figure 2 depicts the execution of the same set of transac-
tions in the DDA model. In this scenario, all transactions
can trivially commit in the order that the system receives
their requests to o1. When two transactions conflicts over
o1, the system simply lets them proceed concurrently. Since
their second operations do not conflict, the transactions can
be serialized in the order that they access o1. Hence, all
transactions can safely commit.

Although somewhat contrived, the examples in Figures 1
and 2 imply the inherent limitation of the GCCM model for
DTS. Here, objects are initially scattered in the network,
and the locations where transaction are invoked are unpre-
dictable. As the result, it may be impractical to design a
globally-consistent policy to assign priorities to transactions
which exhibits desirable performance with arbitrarily gen-
erated transactions. It may not be a good design choice
to simply copy a contention management policy from cen-
tralized (e.g., multiprocessor) transactional systems to dis-
tributed. Instead of designing a globally-consistent policy to
proactively define the priority of a transaction, deciding the
priorities of conflicting transactions after the conflict occurs
(i.e., as in the DDA model) may leave more space to exploit
and increase concurrency of transactions.

3.2 Multi-versioning
The example of Figure 1 and 2 illustrates that the DDA

model can avoid unnecessary aborts stemmed from the in-
herent limitation of the GCCM model. Moreover, past DTS

proposals assume that each object only keeps a single ver-
sion, which may be too conservative and lead to unnecessary
aborts. The DDA model allows DTS to manage multiple
versions of shared objects.

Each object o maintains two object version lists: a pend-
ing version list, called o.vp, and a committed version list,
called o.vc, based on the status of a version’s writer. At any
given time, the versions of each list is numbered in increas-
ing order, e.g., o.vp[1], o.vp[2], ..., etc. The data structure of
an object version is described in Algorithm 1.

Algorithm 1: Data structure of object version
Version

1 Data: data // actual data written to the object
2 id: writer // transaction ID of the writer
3 int: versionNum // ordered version number
4 TxnDsc []: readers // set of readers
5 id []: sucSet // set of successors detected
writing after Version

6 id []: preSet // set of predecessors detected
preceding Version

An object version, called Version, includes:
- Version.data, storing the value;
- Version.writer, storing the writer transaction’s ID;
- Version.readers, storing a set of readers;
- Version.preSet, string a set of detected predecessors;
- Version.sucSet, a set of detected successors (i.e., transac-

tion writing the object after Version.
A read operation of object o returns the value of one of o’s

committed version list. When transaction Ti accesses o to
write a value v(Ti), it appends v(Ti) to the tail of o.vp (note
that before this operation, Ti must guarantee that writing
to o does not violate correctness), e.g., v(Ti) = o.vp[max].
When Ti tries to commits, v(Ti) is removed from o.vp and in-
serted into o.vc. Each transaction keeps two data structures:
readList and writeList. An entry in a readList points to
the version that has been read by the transaction. An entry
in a writeList points to the version written by the transac-
tion.

3.3 Precedence Graph
In dependence-aware DTS, the basic idea to guarantee

correctness is to maintain a precedence graph of transactions
and keep it acyclic, which has been also adopted by some
recent efforts in centralized transactional systems [7, 12, 21].
Generally, transactions form a directed labeled precedence
graph, PG, based on the dependencies created during the
transaction execution. The vertices of PG are transactions.
A directed edge Ti → Tj in PG exists in the following cases:
- Real-time order: Ti terminates before Tj starts; or
- Read after Write (W → R): Tj reads the value written by
Ti; or

- Write after Read (R → W): Tj writes to object o, while
Ti reads the version overwritten by Tj ; or

- Write after Write (W →W): Tj writes to object o, which
was previously written to by Ti.

3.4 Inherent Limitations

3.4.1 Distributed Commit Protocol: InsertVersion
The advantages of the DDA model motivates us to de-

sign a framework to support it in DTS. Past similar ap-

proaches for centralized transactional systems cannot be di-
rectly applied into DTS. In fact, a transaction has to first
locate (for read/write) and fetch (only for write) the ob-
jects before it performs a read/write operation. Since the
DDA model allows multiple conflicting transactions to pro-
ceed concurrently, when a transaction attempts to commit
all its operations, some objects in its writeList may be al-
ready moved to other transactions. Intuitively, for each ob-
ject in its writeList, the transaction commits by finding a
proper position in the object’s version list to insert the new
version, without violating correctness. As a result, in DTS,
it is unavoidable for a transaction to insert an object ver-
sion remotely. In this case, directly employing the classic
idea from centralized transactional systems by iteratively
traversing the written objects to correctly insert all object
versions could be extremely expensive in terms of commu-
nication costs.

Figure 3: The commit operation which inserts ob-
ject versions by traversing each object

As an example, consider the scenario depicted in Figure 3.
At time t1, both T1 and T2 attempt to commit. Note that at
t1, both o1 and o2 are moved to T2 for its write operations.
Hence, T2’s commit operation can be done locally. A circle
filled with letter W indicates the insertion of a version to
the object’s version list. In this scenario, T2 inserts object
versions to o1 and o2 one after another. Note that T2 is
the first transaction to insert objects versions. Hence, it
simply inserts a new version to each object. After the two
versions are inserted, T2 can successfully commit. A circle
with letter C indicates that the transaction which inserts
the new version can commit. Hence, the new version can be
safely read by other transactions.

The commit operation performed by T2 follows the com-
mit protocol in [12]. Since all operations are done locally,
no communication cost between transactions is involved. On
the other hand, when T1 conducts similar operations, such
cost is induced, as shown in Figure 3. Note that T1 reads
o2’s initial value o02 and T2 writes to o2. Hence, T1 should
be serialized before T2. As a result, the versions written to
o1 and o2 by T1 can only be inserted before the versions
written by T2, represented by the dotted arc lines. Since o1
and o2 are not located at T1 when T1 tries to commit, T1

can only perform its commit operations remotely. Such op-
erations induce several iterations of communication between
T1 and the object holders until the all object versions can
be correctly inserted (commit) or not (abort).

The commit operation illustrated in Figure 3 requires fre-
quent coordinations between object holders. Furthermore,

Algorithm 2: Algorithm InsertVersion

1 procedure InsertVersion(o, v(Ti)) when Ti inserts
object version v(Ti) to o

2 remove v(Ti) from o.vp
3 insert v(Ti) after o.vc[max]
4 for Version← o.vc[max] to o.vc[min] do

// scan the committed version list of o from
the latest one

5 if Ti ∈ Version.preSet then
6 remove v(Ti) from o.vp
7 move v(Ti) before Version
8 break

9 copy Ti.preSet to v(Ti).preSet

10 procedure UpdatePre(Ti, o.vc) when Ti writes to
object version o.vc

11 for Version← o.vc[max] to o.vc[min] do
12 if Version.writer ≺H then
13 foreach reader ∈ Version.readers do
14 add reader to Ti.preSet
15 add Ti to Version.sucSet

since a transaction traverses sequentially accessed objects, it
may need several iterations of traversing to find a proper po-
sition for each object without violating correctness, as sug-
gested in [12]. Apparently, such operation introduces large
potential communication cost, which makes it not suited for
DTSs. The design of the InsertVersion algorithm (Al-
gorithm 2) is motivated by these drawbacks. InsertVer-
sion enables each transaction to insert object version in dis-
tributed way and avoid inter-transaction communications,
as shown in Figure 4.

Figure 4: The commit operation implemented by
InsertVersion algorithm

At time t1, T2 learns that it can only be serialized after
T1 by checking the readers of o02 (lines 10-15). Hence, T2

can only commit if and only if all its versions are inserted
after the versions written by T1 (if any). Since T2 inserts
its versions before T1 (by default, a new object version is
inserted to the tail of the committed version list, as shown
in lines 2-3), the positions of the versions written by T1

are reserved when T2 insert its versions. At that time, T2

just checks each version list to find its reserved positions
and inserts its own versions (lines 4-9) there. In this way,
no communications between object holders are involved to
make each version correctly inserted.

3.4.2 Real-time order detection
The definition of the real-time order inherits the widely-

adopted definition in centralized, multiprocessor transac-
tional systems. However, when an update transaction Ti

commits in DTSs, it inserts a new version for each object in
its writeList in a distributed way. As a result, each object
in Ti’s writeList may observe Ti’s commit at different time
points, thus other transactions may get different informa-
tion about Ti’s commit when accessing different objects. To
clarify this, we must define the transaction termination for
DTSs.

Definition 1 (Transaction termination). In DTSs,
a transaction Ti terminates if and only if: 1) Ti aborts; or
2) Ti successfully inserts a new version for each object in its
writeList.

When a transaction Ti accesses an object o with a version
inserted by another transaction Tj , Ti needs to determine
its real-time order with Tj . The only information about the
time of Tj ’s commit that Ti can get, is the time when Tj ’s
version for o is inserted. Obviously, Ti may take a wrong
decision when it uses this information as Tj ’s terminating
time, since o may not seen the last object version inserted by
Tj . Therefore we present the UpdateRt algorithm (Algo-
rithm 3) to let transactions correctly update real-time orders
and revise possibly wrong real-time order detections.

Figure 5: T4 detects that T1 ≺H T4 at t2. Then at t3,
T4’s commit is postponed after t4.

Consider the scenario depicted in Figure 5. When T1 tries
to commit, it has to insert new versions to o1 and o2, which
was moved to T2 and T3, respectively. We omit the insert
operations of T2 and T3 since they are done locally. As a
result, when T1 successfully inserts a new version to o1 at
t1, o2 is still waiting for T1 to insert its new version, which
will be done at t4. When transaction T4 starts at t2, it
first accesses o1 to read a value. By comparing its starting
time and the insertion time of o21, T4 wrongly detect that
T1 ≺H T4, although in fact they are concurrent transactions
since T1 terminates at t4. When T4 tries to insert a version
to o2 at t3, it can only insert a version after the version
written by T1. Furthermore, since T4 has a real-time order
dependency with T1 , it has to postpone its termination until
T1 commits to comply with the detected real-time order.

The example of Figure 5 illustrates that when a transac-
tion makes a wrong decision about the real-time order, its
execution should comply with the real-time order to avoid

Figure 6: T5 detects that T1 ⊀H T5 at t3. Then at t3,
T5 cannot read the version written by T4.

unnecessary abort. Moreover, other transactions’ execution
should also accommodate the established (although wrong)
real-time order. Consider, for example, the scenario de-
picted in Figure 6. When T4 commits at t4, it wrongly
detects that T1 ≺H T4 and inserts the version o31 to o1.
When T5 starts at t3, it detects that T3 ≺H T5 and reads
o12. Thus T5 establishes a R → W order with T1. When T5

accesses o1 to read a value, it detects that T1 ≺H T4 ≺H T5.
Now the contradiction forms since T5 already knows that
T1 is concurrent with itself. Therefore, T5 knows that T4

made a wrong detection. The solution is that T4 postpones
its termination until T5 commits, thus the real-time order
T4 ≺H T5 is not held and T5 can read the value o11.

Algorithm 3: UpdateRt(o) algorithm for Ti to update
real-time order when accesses o

1 foreach Version ∈ o.vc do
2 if Version.writer /∈ Ti.rtPre then

// for each committed version inserted to
o

3 if Version.writeT ime < Ti.timeStamp &
Ti 9 Version.writer then

// check if Ti and Version.writer are
concurrent

4 add Version.writer to Ti.rtPre;
// Version.writer ≺H Ti

5 foreach Version ∈ o.vp do
6 if Version.writer ∈ Ti.rtPre then

// the detected real-time order
Version.writer ≺H Ti is wrong

7 wait until Version.writerstatus = committed

4. ALGORITHMS DESCRIPTION AND ANAL-
YSIS

Applying the precedence graph in DTSs introduces some
unique challenges. The key challenge is that, in distributed
systems, each transaction has to make decisions based on
its local knowledge. A centralized algorithm (e.g., assign
a coordinator node to maintain the precedence graph and
make decisions whenever a conflict occurs), which involves
frequent interactions between each individual node and the
coordinator node, is impractical due to the underlying com-
munication costs and the limited resources available on a

single node. Along this path, it is impractical to maintain a
global precedence graph on each individual node. In prac-
tice, we propose a set of policies to handle read/write oper-
ations such that the acyclicity of the underlying precedence
graph is not violated, without frequently inter-transaction
communications for each transaction.

4.1 Read

Algorithm 4: Algorithms for read operations

1 procedure Read(o) for read-only transaction Ti

2 UpdateRt(o) // update the real-time order
3 for Version← o.vc[max] to o.vc[min] do

// scan the committed version list of o from
the latest one

4 if Version.writer ≺H then
5 add Ti to Version.readers
6 return Version.data
7 break

8 procedure Read(o) for update transaction Ti

9 UpdateRt(o)
10 abortList← ∅
11 foreach suc ∈ o.vc[max].sucSet∪ o.vc[max].readers do
12 if suc.type 6= write-only then
13 if suc /∈ o.vc[max].readers then
14 if suc.timeStamp ≤ Ti.timeStamp then
15 Abort
16 break

17 else
18 add suc to abortList

19 else
20 Abort
21 break

22 if Ti.status = live then
23 foreach abortWriter ∈ abortList do
24 send abort message to abortWriter

25 add Ti to o.vc[max].readers
26 return o.vc[max].data // return the latest

version

The pseudo code for read operations is shown in Algo-
rithm 4. Consider a transaction Ti reading object o. If
Ti is a read-only transaction, it reads the latest committed
version o.vc[j] where o.vc[j].writer ≺H Ti, i.e., the writer of
o.vc[j] precedes Ti according to their real-time order relation
(lines 3-7).

This way, a read-only transaction guarantees that it can
be always serialized before other concurrent transactions.
On the other hand, each object must keep proper object
versions to satisfy that each read-only transaction can find
the latest committed version which precedes it in real-time
order.

If Ti is an update transaction, it checks the writing suc-
cessors (updated by transaction writing the object following
Algorithm 2) and readers of the latest committed version
o.vc[max] and applies a contention management policy to
make the decision. In the following, we discuss it case by
case.

1. If there is no live transaction in o.vc[max].rtSuc ∪
o.vc[max].readers, or for any live transaction Tj ∈
o.vc[max].rtSuc, Tj just reads o.vc[max] (line 13), then

Ti reads o.vc[max] (lines 25-26).
2. If there exists a write-only transaction in o.vc[max].rtSuc ∪

o.vc[max].readers (line 12), then Ti aborts (lines 20-
21).

3. If there exists an update transaction Tj ∈ o.vc[max].rtSuc ∪
o.vc[max].readers and Tj writes to o (line 13), then
only one of Ti and Tj can proceed. We adopt a Greedy
contention manager to compare priorities between two
transactions based on their timestamps (line 14). The
transaction with earlier timestamp has higher prior-
ity (lines 14-18). After examines all transactions in
o.vc[max].rtSuc, if Ti determines to proceed, it sends
an abort message to each transaction which is aborted
by Ti (lines 23-24).

Figure 7: Transactions are serialized in order
T1T3T2T4T5T6, where T6 aborts.

In the scenario depicted in Figure 7, the sequence of ver-
sions read by T2 is {o11, o12, o23}. Note that for object o2, T2

does not read o22 written by T4 since T4 and T2 are concur-
rent. Obviously, if T2 reads o22, the correctness is violated
since T2 and T4 cannot be serialized. In this example, T5

checks the successors of o22 (written by T4) when reads o2.
Hence, T5 compares its priority with T6 and aborts T6 by
sending it an abort message. Now the set of transactions
can be serialized in order T1T3T2T4T5T6, where T6 aborts.

4.2 Write
The write operation is managed by the same contention

management policy presented above for handling read op-
eration of update transactions. A transaction Ti checks
the readers of the latest committed version o.vc[j] where
o.vc[j].writer ≺H Ti, i.e., the writer of o.vc[j] precedes Ti in
real-time order.

1. If there is no live transaction in o.vc[j].readers, or for
any live transaction Tj ∈ o.vc[j].readers, Tj is a read-
only transaction, then Ti writes to o by appending
v(Ti) to the end of the pending committed list o.vp.

2. If there exists an update transaction Tj ∈ o.vc[j].readers
which reads o.vc[max], then only one of Ti and Tj can
proceed:
a. if Ti is a write-only transaction, then Ti has the

higher priority;
b. otherwise, the transaction with earlier timestamp

has higher priority.
After examines all transactions in o.vc[j], if Ti does
not abort, it sends an abort message to each transac-
tion which is aborted by Ti. Then Ti writes to o by
appending v(Ti) to the end of the pending committed
list o.vp.

An an illustrative example, consider the scenario depicted

Figure 8: Transactions are serialized in order
T1T2T3T4, where T1 and T2 abort.

in Figure 8. When T3 writes to o1, it aborts T1 since T3

is a write-only transaction and T1 is an update transaction
which reads o01. When T2 reads o1, it aborts since T3 is a
write-only transaction overwriting o01. On the other hand,
T4 does not abort when writes o2 since o02 has no readers.
Due to the same reason, T4 does not abort when reads o11
written by T3. The set of transactions can be serialized in
order T1T2T3T4, where T1 and T2 abort.

4.3 Correctness

Lemma 1. In the DDA model, a transaction does not gen-
erate any cycle in the precedence graph PG before it tries to
commit.

Proof. We prove this theorem case by case. Consider an
update transaction Ti. If Ti reads object version okj , then it

only adds a W → R edge from okj .writer to Ti to PG since

okj is the latest committed version of oj . If Ti writes to object
oj , it first finds the latest committed version oj .vc[k] where
oj .vc[k].writer ≺H Ti, i.e., the writer of oj .vc[k] precedes
Ti in real-time order. It only adds an R → W edge from
Tl to Ti in two cases: 1) Tl is a read-only transaction which
reads oj .vc[k]; 2) Tl is a committed update transaction which
reads oj .vc[k]. Note that the operations of Ti only introduce
incoming edges to Ti in PG. Hence, Ti does not generate
any outgoing edge before it tries to commit and no cycle
forms.

Consider a read-only transaction Ti. From the description
of read operations, we know that Ti can always find an object
version okj to read for object oj , where okj .writer ≺H Ti.

Hence, for each object okj read by Ti: 1) no new incoming
edge to Ti is added to PG; 2) an R→W outgoing edge from
Ti to Tl is added to PG for each Tl ∈ okj .rtSuc where Tl

writes to oj . Suppose a cycle is generated by Ti’s operation.
Then we can find a cycle Ti1 → Ti → Ti2 . . . → Ti1 where
Ti1 ≺H Ti and Ti → Ti2 is an R → W edge. Then a path
exists from Ti2 to Ti1 before Ti’s operation. Note that Ti2 is
an update transaction. There are two cases based on Ti2 ’s
status. If Ti2 is a live transaction, from the first part of the
proof we know that no outgoing edge from Ti2 exists in PG.
If Ti2 is a committed transaction, a path forms from Ti2 to
Ti1 if and only if Ti1 commits after Ti2 commits. In both
cases, a contradiction forms. The lemma follows.

Lemma 1 guarantees the acyclicity of PG from the time a
transaction starts to the time it tries to commit. Obviously,
the commit of a read-only transaction does not make any
change to PG. For update transactions, a new version is

inserted in the committed version list for each object in its
writeList. Such operation brings new edges to PG.

Lemma 2. In the DDA model, the InservVersion oper-
ation of an update transaction does not generate any cycle
in the precedence graph PG.

Proof. Consider an update transaction Ti which inserts
a new version v(Ti) to the committed version list oj .vc of
object oj . From Lemma 1, we know that before Ti tries to
insert object versions, it does not bring any new outgoing
edge to PG. If v(Ti) is inserted to the tail of oj .vc, then
a W → W edge from oj .vc[max].writer to Ti and a set of
R→W edges from Tl to Ti for each Tl ∈ oj .vc[max].readers
are added to PG. Hence, no new outgoing edge from Ti is
added to PG.

If v(Ti) is inserted to the place preceding oj .vc[k], then
a W → W edge from oj .vc[k − 1].writer to Ti and a set of
R→W edges from Tl to Ti for each Tl ∈ oj .vc[k−1].readers
are added to PG. Additionally, a W → W edge from Ti

to oj .vc[k].writer is added to PG. However, from the de-
scription of InsertVersion we know that v(Ti) is inserted
before oj .vc[k] if and only if there preexists an edge from
Ti to oj .vc[k] in PG. Hence, the InsertVersion operation
does not introduce new outgoing edge from Ti to PG. The
lemma follows.

We now introduce the following lemma relying on Lemma
4 from [12]:

Lemma 3. If PG of the execution of a set of transactions
is acyclic, then the non-local history H of the execution sat-
isfies opacity.

Then from Lemma 1, 2 and 3, we have the following the-
orem.

Theorem 4. In the DDA model, the non-local history H
of the execution of any set of transactions satisfies opacity.

4.4 Permissiveness
The key advantage of the DDA model compared with the

GCCM model is reducing the number of aborts. Formally,
the criterion of transaction histories accepted by a DTS is
captured by the notion of permissiveness [5], which restricts
the set of aborted transactions by defining such criterion.
For multi-versioned DTSs, Perelman et al. propose multi-
versioned (MV)-permissiveness in [20]. In a DTS that satis-
fies MV-permissiveness, read-only transactions never abort
and an update transaction is only aborted when it conflicts
with another update transaction. Based on MV-permissiveness,
we propose the definition of strong multi-versioned(MV)-
permissiveness.

Definition 2. A DTS satisfies strong multi-versioned (MV)-
permissiveness if a transaction aborts only when it is a non-
write-only update transaction that conflicts with another up-
date transaction.

Informally, in a DTS that satisfies strong MV-permissiveness,
read-only and write-only transactions never abort. Further-
more, read-only transactions never cause other transactions’
aborts.

Theorem 5. The DDA model satisfies strong MV-permissiveness.

Proof. The proof directly follows the description of read/write
operations. In the DDA model, a read-only transaction
never conflicts with other transactions. A write-only trans-
action only conflicts with non-write-only update transac-
tions, and always has higher priority. The theorem fol-
lows.

4.5 Garbage Collection and Read Visibility
We define the following garbage collection (GC) property

for strong MV-permissiveness DTSs.

Definition 3. A strong MV-permissiveness DTS satis-
fies real-time prefix (RtP) GC if at any point in a transac-
tional history H, an object version okj is kept only if there
exists an extension of H with a live transaction Ti, such that
okj is the latest version of oj satisfying okj .writer ≺H Ti.

A DTS satisfying RtP GC just keeps the shortest suffix of
version that might be needed by live read-only transactions.
From the description of read/write operations of the DDA
model, we have the following theorem.

Theorem 6. The DDA model satisfies RtP GC.

Another desirable property for a DTS is not to update
shared memory during read-only transactions, i.e. a read-
only transaction leaves no trace the external system about
its execution. Such DTSs are said to support invisible reads.
We can prove the following corollary.

Corollary 7. The DDA model supports invisible reads.

Proof. We prove the corollary by contradiction. Sup-
pose the DDA model does not support invisible reads. Then
for any history H, we can find a read-only transaction Ti

which causes the abort of a read-only transaction or a write-
only transaction if Ti is invisible. Note that if Ti is invisible,
then the edges added to PG by its read operations are not
observed by the DTS. From the proof of Lemma 1, we know
that Ti only adds outgoing edges from Ti to PG. On the
other hand, an update transaction only adds incoming edges
to PG. Hence, the only possibility of the cycle formed must
be of the form Ti1 → Ti → → Ti2 → Ti1 where: 1)
Ti1 ≺H Ti; 2) Ti2 is an update transaction; 3) Ti1 reads a
committed version written by Ti2 . Then contradiction forms
since Ti and Ti2 must be concurrent transactions. The corol-
lary follows.

5. CONCLUSIONS
This paper takes a step towards enhancing concurrency in

DTSs. We have shown the tradeoff of directly adopting past
conflict resolution strategies: the GCCM model is easy to
implement and involves low communication cost in resolving
conflicts, while it may introduce large amount of unnecessary
aborts; resolving conflicts completely relying on establishing
precedence relations can effectively reduce aborts, but it re-
quires frequently message exchanging, which may introduce
high communication cost in DTSs. The DDA model, in some
sense, plays a role between these two extremes. It allows the
maximum concurrency for some transactions (read-only and
write-only transactions), and uses contention management
policy to treat “dangerous” transactions (non-write-only up-
date transactions), which will likely produce cycles in the
underlying precedence graph.

Our work suggests a new direction for future research, par-
ticular for DTSs, that different conflicting resolution strate-
gies can be applied based on the styles of transactions. This
paper shows that there is a tradeoff between the inter-transaction
communication cost and the number of aborts, which is
unique for DTSs. We believe that understanding this trade-
off (as well as others already shown in centralized multipro-
cessor systems) is important in the design of DTSs.

6. ACKNOWLEDGMENTS
This work is supported in part by US National Science

Foundation under grant CNS-1116190.

7. REFERENCES
[1] H. Attiya and A. Milani. Transactional scheduling for

read-dominated workloads. In OPODIS ’09:
Proceedings of the 13th International Conference on
Principles of Distributed Systems, pages 3–17, Berlin,
Heidelberg, 2009. Springer-Verlag.

[2] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain.
Software transactional memory for large scale clusters.
In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of
parallel programming, pages 247–258, New York, NY,
USA, 2008. ACM.

[3] M. Couceiro, P. Romano, N. Carvalho, and
L. Rodrigues. D2stm: Dependable distributed software
transactional memory. PRDC ’09.

[4] N. L. Diegues and P. Romano. Bumper: Sheltering
transactions from conflicts. In IEEE SRDS, pages
185–194, 2013.

[5] R. Guerraoui, T. A. Henzinger, and V. Singh.
Permissiveness in transactional memories. In DISC
’08: Proceedings of the 22nd international symposium
on Distributed Computing, pages 305–319, Berlin,
Heidelberg, 2008. Springer-Verlag.

[6] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a
theory of transactional contention managers. In PODC
’05: Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing,
pages 258–264, New York, NY, USA, 2005. ACM.

[7] R. Guerraoui and M. Kapalka. On the correctness of
transactional memory. In PPoPP ’08: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, pages 175–184,
New York, NY, USA, 2008. ACM.

[8] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer, III. Software transactional memory for
dynamic-sized data structures. In PODC ’03:
Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 92–101,
New York, NY, USA, 2003. ACM.

[9] M. Herlihy and Y. Sun. Distributed transactional
memory for metric-space networks. Distributed
Computing, 20(3):195–208, 2007.

[10] P. R. J. Paiva, P. Ruivo and L. Rodrigues. Autoplacer:
scalable self-tuning data placement in distributed
key-value stores. In ICAC ’13.

[11] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and
random trees: distributed caching protocols for

relieving hot spots on the world wide web. In STOC
’97.

[12] I. Keidar and D. Perelman. On avoiding spare aborts
in transactional memory. In SPAA ’09: Proceedings of
the twenty-first annual symposium on Parallelism in
algorithms and architectures, pages 59–68, New York,
NY, USA, 2009. ACM.

[13] J. Kim, R. Palmieri, and B. Ravindran. Enhancing
concurrency in distributed transactional memory
through commutativity. In Euro-Par 2013 Parallel
Processing - 19th International Conference, Aachen,
Germany, August 26-30, 2013. Proceedings, pages
150–161, 2013.

[14] T. Kobus, M. Kokocinski, and P. T. Wojciechowski.
Hybrid replication: State-machine-based and
deferred-update replication schemes combined. In
ICDCS, 2013.

[15] G. Korland, N. Shavit, and P. Felber. Noninvasive
concurrency with Java STM. In MULTIPROG, 2010.

[16] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[17] K. Manassiev, M. Mihailescu, and C. Amza.
Exploiting distributed version concurrency in a
transactional memory cluster. In PPoPP ’06:
Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel
programming, pages 198–208, New York, NY, USA,
2006. ACM.

[18] S. Peluso, P. Romano, and F. Quaglia. SCORe: A
scalable one-copy serializable partial replication
protocol. In Middleware, 2012.

[19] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and
L. Rodrigues. When scalability meets consistency:
Genuine multiversion update-serializable partial data
replication. In ICDCS, 2012.

[20] D. Perelman, R. Fan, and I. Keidar. On maintaining
multiple versions in stm. In PODC ’10: Proceeding of
the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, pages 16–25, New
York, NY, USA, 2010. ACM.

[21] H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel.
Committing conflicting transactions in an stm. In
PPoPP ’09: Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel
programming, pages 163–172, New York, NY, USA,
2009. ACM.

[22] T. Riegel, C. Fetzer, H. Sturzrehm, and P. Felber.
From causal to z-linearizable transactional memory. In
PODC ’07: Proceedings of the twenty-sixth annual
ACM symposium on Principles of distributed
computing, pages 340–341, New York, NY, USA, 2007.
ACM.

[23] N. Shavit and D. Touitou. Software transactional
memory. PODC ’95.

[24] A. Turcu, S. Peluso, R. Palmieri, and B. Ravindran.
Be general and don’t give up consistency in
geo-replicated transactional systems. In OPODIS,
2014.

[25] B. Zhang and B. Ravindran. Brief announcement:
Relay: A cache-coherence protocol for distributed
transactional memory. In OPODIS ’09: Proceedings of

the 13th International Conference on Principles of
Distributed Systems, pages 48–53, Berlin, Heidelberg,
2009. Springer-Verlag.

[26] B. Zhang and B. Ravindran. Brief announcement: on
enhancing concurrency in distributed transactional
memory. In PODC, pages 73–74, 2010.

