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Abstract
Distributed Transactional Memory (DTM) is a recent but
promising model for programming distributed systems. It
aims to present programmers with a simple to use distributed
concurrency control abstraction (transactions), while main-
taining performance and scalability similar to distributed
fine-grained locks. Any complications usually associated
with such locks (e.g., distributed deadlocks) are avoided.
We propose a new DTM framework for the Java Virtual Ma-
chine named Hyflow2. We implement Hyflow2 in Scala and
base it on the existing ScalaSTM API soon to be included in
the Scala standard library. We thus aim to create a smooth
transition from multiprocessor STM programs to DTM.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming–distributed program-
ming; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming–parallel programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features–concurrent pro-
gramming structures

General Terms Languages, Performance.

Keywords transactional memory, distributed systems, nested
transactions, open nesting

1. Introduction
Programming distributed concurrency has always been a
difficult task. Today, there are three popular models that can
be used to address such a task: shared memory, actors and
transactions.

In the shared memory model, processes access the
memory representing the shared state while ensuring safety
using synchronization primitives such as distributed locks.
This model is supported by technologies such as RPC and
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RMI that allow remotely invoking methods on objects (this
is know as the control-flow model, because the compu-
tation moves where the data is). Synchronization primi-
tives are available using dedicated platforms like Apache
Zookeeper [7] and Hazelcast [3] or can be implemented
ad-hoc. Alternatively, in the data-flow model, distributed
caches such as Ehcache [2] and Infinispan [4] can be used to
bring the data where the computation is. The shared memory
model however is prone to hard-to-trace concurrency bugs
such as race conditions, dead-locks and live-locks.

The actor model prohibits sharing memory by encapsu-
lating mutable state inside light-weight sequential constructs
called actors. Actors communicate via message passing and
their operations always execute sequentially, thus avoiding
concurrency problems. The actor model is based on Com-
municating Sequential Processes (CSP) introduced by Hoare
in [13], and became popular with the advent of the Erlang
programming language. Since then, many languages (e.g.
Scala and Google Go) and frameworks (e.g. Akka, ActorKit)
have embraced this model. The actor model is very effective
when applicable, but some problems are difficult to formu-
late within its restrictions. Furthermore, it requires changing
the way most programmers think about concurrency.

Transactions are the preferred concurrency mechanism
in database environments. They provide ACID properties
(Atomicity, Consistency, Isolation and Durability), making
them easier to reason about compared to low-level primitives
(locks) or even actors. Transactions are sequences of opera-
tions that either all execute successfully or all fail. A failed
(aborted) transaction has no effects visible to other transac-
tions (its operations are rolled-back). A successful (commit-
ted) transaction appears to take effect atomically, and any
changes performed while the transaction is running are not
visible to other committed transactions.

On the downside, distributed transactions do not seam-
lessly integrate with popular programming languages. The
most common approach is to delegate all transactional pro-
cessing to a separate database server. A client library would
then be used to communicate with the database server, send-
ing it commands expressed in the Structured Query Lan-
guage (SQL) and receiving the result of their execution.
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Writing SQL can be avoided by employing an additional
software layer called an Object Relational Mapper (ORM),
further increasing complexity.

Programmers wanting to use transactions for their dis-
tributed applications can also employ the X/Open XA stan-
dard or the equivalent Java Transaction API (JTA). While de-
signed to coordinate multiple transactional resources (such
as database servers or message queues) in distributed trans-
actions, XA/JTA can be used to provide distributed trans-
actional access to regular, in-memory objects. Alternatively,
recent distributed cache frameworks provide transactional
access to their stored data.

Significant effort has been spent in the multiprocessor
research community towards Transactional Memory (TM).
TM is an abstraction that aims to replace locks as a synchro-
nization primitive with transactions. Many TM systems use
atomic blocks to enclose code that must execute atomically.
In-memory transactions are utilized behind the scenes, but in
many cases, the user does not need to be aware of it. Aborted
transactions are implicitly retried until they succeed.

We believe distributed concurrency should be seamlessly
expressed in a programming language just like atomic blocks
succeed to do for multiprocessor concurrency. Furthermore,
many applications do not need durability (or have relaxed
requirements for durability) so employing a classic disk-
backed relational database is an overkill. Distributed Trans-
actional Memory (DTM) addresses these issues. The DTM
model was proposed [12] to replace shared memory systems
using distributed locks with light-weight, in-memory trans-
actions.

This paper describes our new DTM implementation for
the Java Virtual Machine (JVM) named Hyflow2. Hyflow2
is available as an open-source project at our website,
http://hyflow.org/. Hyflow2 is a complete rewrite of our pre-
vious DTM library, Hyflow [16, 17], which is also available
at the same website. In designing Hyflow2 we focused on
several issues that could be improved compared to the orig-
inal Hyflow: modularity, clean API that does not require
byte-code rewriting, and performance.

Hyflow2 is written in the Scala programming language
for the JVM and internally uses the actor concurrency model
by employing the Akka [1] toolkit. We provide two APIs: a
Scala API that uses Scala’s powerful control abstractions and
a Java API for compatibility. The Scala API is based on the
excellent ScalaSTM API [6, 9], which is due to be included
in Scala’s standard library. Hyflow2 is a library DTM: it
requires no compiler or run-time support. This enables easy
deployment on standard JVMs.

Hyflow2 currently provides an implementation of the
Transactional Forwarding Algorithm (TFA, [18]), a DTM
technique that uses the data-flow model (immobile transac-
tions, mobile objects). We support the flat, closed and open
nesting models [20, 21], as well as distributed conditional
synchronization.

@Atomic

void transfer(Account a1, Account a2, int amount)

{ withdraw(a1, amount);

deposit(a2, amount);

}

@Atomic

void withdraw(Account a, int amount) {

a.value -= amount;

}

@Atomic

void deposit(Account a, int amount) {

a.value += amount;

}

Figure 1. Example of the original Hyflow API. Transac-
tions are marked using the @Atomic annotation.

To the best of our knowledge, Hyow2 is the first Dis-
tributed Transactional Memory implementation with sup-
port for Scala, interoperability with Java, and key DTM
features including nested transactions and distributed con-
ditional synchronization. Our focus on performance lead to
significant speed improvement compared to Hyflow. In our
tests, Hyflow2 proved up to 7 times faster at low node counts
and up to 100% faster at high node counts.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly describes the original Hyflow library and the
areas where it was lacking. Section 3 introduces Hyflow2’s
new API. Section 4 describes transactional nesting and the
API for supporting it in Hyflow2. Implementation is dis-
cussed in Section 6. Hyflow2 is experimentally evaluated in
Section 7. Related work is briefly mentioned in Section 8
and Section 9 concludes the paper.

2. The Hyflow DTM framework
Hyflow is our original DTM research prototype. It was built
on top of the Deuce STM library and the Aleph commu-
nication framework, two research projects that are not ac-
tively maintained. Hyflow’s modular design attempts to al-
low for pluggable network transports, transactional algo-
rithms, directory protocols and contention managers. The in-
terfaces to the various components were however not flexi-
ble enough, and hard-coded links were introduced between
some of the modules’ implementations. Additionally, we
were compelled to make some changes to the two libraries
we’re using in order to work around their limitations. Even-
tually, the source code became difficult to maintain and in
dire need of restructuring, thus leading us to start working
on Hyflow2.

Hyflow (just like the underlying Deuce STM) relies on
automatic byte-code rewriting to provide an API based on
annotations. As seen in Figure 1, the user marks the meth-
ods to be executed transactionally as @Atomic. A Java Agent
rewrites such methods into two polymorphic copies: the
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first copy has the same signature as the original method,
and it initiates a new transaction (or reuses an already run-
ning transaction, if available) and then calls the second copy
within the context of this transaction. The second copy is
a transacted version of the original method’s byte-code. It
takes an additional argument (a transaction context), and re-
places all field reads and writes with transactional read and
write operations. Any method calls within transacted code
are modified to also pass the transaction context argument.

The automatic instrumentation also touches on methods
not marked as @Atomic, by creating an additional trans-
acted copy of the method as described above. When such
method is called outside any transaction, the original byte-
code is executed. When methods are called within a trans-
action (by transacted code), the addition of the transaction
context argument leads to executing the transacted versions
of the methods.

This approach works particularly well for a simple mul-
tiprocessor transactional memory system because the instru-
mented byte-code can be made very fast: no extra objects
need to be instantiated (the transactional context object can
be reused), method calls can be kept to a minimum (the
transactional read and write operations can be inlined), and
only one thread-local variable lookup needs to be performed
at the beginning of the transaction. However it is a night-
mare to develop new features under this model: the instru-
mented byte-code cannot readily be debugged, while work-
ing on the Java agent performing the instrumentation is the
equivalent of programming in assembly! Moreover, the po-
tential speed benefits of this model become negligible when
dealing with distributed systems, where network accesses
are the most costly operations. Modern JVMs with state-of-
the-art Just-in-Time (JIT) compilation and garbage collec-
tion further minimize the benefits of the byte-code rewriting
approach.

Instead, our effort is better spent optimizing the real bot-
tlenecks of the system: network round-trip time and thread
context switch overheads. We will further explain these is-
sues in Section 6.6.

3. Hyflow2 API
Hyflow2 API is based on the excellent ScalaSTM API[6].
In fact, Hyflow2 tries to reuse ScalaSTM’s interfaces wher-
ever possible, and partially implements a back-end for the
ScalaSTM API.

3.1 ScalaSTM
ScalaSTM is an STM API for Scala due to be included
in the Scala standard library in an upcoming release. The
API allows for pluggable back-end implementations, and it
ships with a reference implementation, CCSTM[9]. Hyflow2
inherits all features described in this section.

Transactions in ScalaSTM are defined using atomic
blocks, as shown in Figure 2. To achieve this syntax, atomic

val ctr = Ref(0)

atomic { implicit txn =>

ctr() = ctr() + 1

}

Figure 2. An example transaction in ScalaSTM (common
usage).

val ctr: Ref[Int] = Ref[Int](0)

atomic.apply(new Function1[InTxn,Unit] {

def apply(implicit txn: InTxn): Unit = {

ctr.update(ctr.apply(txn) + 1)(txn)

}

})

Figure 3. A more verbose version of the code in Figure 2,
with several Scala syntactic shortcuts written explicitly.

is a TxnExecutor object whose apply method takes a func-
tion as its only argument and executes this function as a
transaction. The “implicit txn =>” construct denotes that
the function passed to apply takes one implicit argument,
the transaction context object.

ScalaSTM uses transactional references (Ref s) as a con-
tainer for the values that are to be accessed using transac-
tional semantics. The Ref containers mediate all access to
the data within. To access a value of a Ref ref1 within a
transaction, one would use ref1() – i.e., call ref1.apply() –
or ref1.get() as an alternative syntax. To change the value of
the Ref inside a transaction, one should use ref1() = v – i.e.,
call ref1.update(v) – or alternatively, ref1.set(v).

All of these methods (apply, get, update and set in class
Ref) take a transaction context object (i.e., an instance of
the class InTxn) as an additional, implicit argument. Implicit
arguments in Scala code may be omitted, as long as the
compiler can find in scope a variable of the appropriate type
marked with the implicit keyword. In Figure 2, the txn object
is automatically passed to the apply() and update() methods.
Figure 3 shows how Scala interprets the code in Figure 2.

This mechanism using implicit arguments and Refs leads
to a clean syntax with relatively little redundant code (only
the “implicit txn =>” construct and the function call “()”
characters are superfluous). Another benefit of this mecha-
nism is strong atomicity for all Refs. Strong atomicity is the
desirable property of a TM system which protects against
concurrent access of a memory location from both trans-
actional code and non-transactional code (for contrast, a
weakly atomic TM system would have an undefined be-
havior in this situation). Accesses to a Ref’s contents via
the apply or update methods require an implicit transaction
context object to be in scope, otherwise compilation fails.
This requirement is satisfied inside an atomic block as ex-
plained in the previous paragraph. Outside atomic blocks
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def takeFirst(): T = atomic {

implicit txn =>

val old_head = this.head()

if (old_head == null)

retry // do not proceed if empty

this.head() = old_head.next

return old_head.value

}

Figure 4. Conditional synchronization using retry. Transac-
tion can only proceed once there is at least one item in the
list.

class Account(val _id: String) extends HObj {

val type = field("") // a string field

val value = field(0) // an integer field

Hyflow.dir.register(this) // Register with the

directory manager

}

Figure 5. Hyflow2 Object example for a bank account.

however, no transaction context value is implicitly available,
so calls to apply or update would lead to compilation er-
rors. Single-operation transactions are used to allow access-
ing Refs outside atomic blocks. ref1.single.get() would, for
example, spawn a transaction for the sole purpose of retriev-
ing ref1’s value.

ScalaSTM allows temporarily aborting a transaction us-
ing the retry() method. This is usually used for enforcing
preconditions. Suppose for example the takeFirst operation
on a queue (Figure 4). When the queue is empty, this op-
eration may invoke retry, effectively blocking until at least
one element is available. This behavior is called conditional
synchronization. After calling retry, the transaction should
only execute again once any of the values it has read is up-
dated, otherwise it will follow the same execution path and
call retry again. A simplistic implementation may, however,
blindly restart the transaction after an exponential back-off.

3.2 Hyflow2 Objects
While in ScalaSTM transactions operate on Refs directly,
Hyflow2 introduces an additional layer – the Hyflow2 Object
– as a container for Refs (see Figure 5). An Hyflow2 Object
mixes in the HObj Scala trait 1 and is Hyflow2’s basic unit of
data. Each Hyflow2 Object (henceforth referred to as HObj)
has a unique identifier, which Hyflow2 uses to locate the
object. The key is usually specified by the user at the object’s
creation, by passing it as an argument to the constructor.

Each HObj is composed from one or more fields. Fields
are specialized Refs that maintain their association with the

1 A Scala trait is similar to a Java interface. A class can therefore mix in
(i.e., implement) multiple traits. However unlike interfaces, Scala traits may
contain implementation.

def deposit(accId: String, amount: Int) = atomic {

implicit txn =>

val acc = Hyflow.dir.open[Account](accId)

val newVal = acc.value() + amount

acc.value() = newVal

returm newVal

}

Figure 6. Hyflow2 transaction example. Transaction must
open an object before operating on it.

enclosing HObj and their order number within that object.
Fields are created by calling the HObj.field method inside
the object’s constructor, and passing it an initial value.

3.3 Hyflow2 Directory Manager
The Directory Manager (DM) is Hyflow2’s module that
keeps track of the objects’ location. When an HObj instance
is created, it registers itself with the DM (Figure 5). If the
object later migrates to a different node, it updates its regis-
tration with the DM.

The Directory Manager also handles retrieving objects
from their owner nodes over the network. This operation is
called opening (see Figure 6). It requires the identifier of
the requested object and it generally caches a copy of the
requested object on the local node.

4. Transaction Nesting
Hyflow2 includes support for nested atomic blocks. In this
section we first briefly describe the three nesting models
previously studied in TM [11, 14]: flat, closed and open.
Next we introduce the API support for nesting in Hyflow2,
and explain how it works. Lastly, we make the case for a
third atomic construct.

4.1 Nesting Models
The three transaction nesting models differ based on whether
the parent and children transactions can independently abort:

Flat nesting
is the simplest type of nesting, and simply ignores the ex-
istence of transactions in inner code. All operations are
executed in the context of the outermost enclosing trans-
action, leading to large monolithic transactions. Aborting
the inner transaction causes the parent to abort as well
(i.e., partial rollback is not possible), and in case of an
abort, potentially a lot of work needs to be rerun.

Closed nesting
In closed nesting, inner transactions can abort indepen-
dently of their parent (i.e., partial rollback), thus reduc-
ing the work that needs to be retried. Changes are only
made visible to outside transactions when the outermost
transaction commits.
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// Simple open-nested transaction without

abstract locks or commit or abort handlers

atomic.open { implicit txn =>

val ctr = Hyflow.dir.open[Counter]("id")

ctr.value() += 1

}

// Open-nested transaction that acquires a single

abstract lock

atomic.open("abslock0") { implicit txn =>

val ctr = Hyflow.dir.open[Counter]("id")

ctr.value() += 1

}

// More complex usage case, with abort and commit

handlers. Lock is held after commit.

atomic.open { implicit txn =>

acquireAbsLock("absLock0")

val ctr = Hyflow.dir.open[Counter]("id")

ctr.value() += 1

} onAbort { implicit txn =>

val ctr = Hyflow.dir.open[Counter]("id")

ctr.value() -= 1

} onCommit { implicit txn =>

holdAbsLock("absLock0")

}

Figure 7. Open nesting in Hyflow2

Open nesting
In open nesting, operations are considered at a higher
level of abstraction. Open-nested transactions are al-
lowed to make their changes visible and commit to the
shared memory independently of their parent transac-
tions, optimistically assuming that the parent will com-
mit. If however the parent aborts, the open-nested trans-
action needs to run compensating actions to undo its ef-
fect. The compensating action does not simply revert the
memory to its original state, but runs at the higher level
of abstraction. For example, to compensate for adding
a value to a set, the system would remove that value
from the set. Although open-nested transactions breach
the isolation property, this potentially enables significant
increases in concurrency and performance. Open-nested
transactions typically use constructs called abstract locks
to guarantee consistency.

4.2 Nesting API
Flat and closed nesting are semantically equivalent and can
be used interchangeably. Unlike in the original Hyflow, we
decided not to expose the decision of which of the two mod-
els to use in the standard user-facing API. Hyflow2 may use
any of these models to handle nested atomic blocks. Cur-
rently, the decision is fixed based on a configuration value,
but in the future it could be made adaptively at runtime.

new OpenNestingBlock(

atomic.open { implicit txn =>

// Atomic bloc is wrapped in an

OpenNestingBlock

}

).onCommit( { implicit txn =>

// handler is passed to onCommit method. After

registering the callback, onCommit

executes the block wrapped above.

}

)

Figure 8. Expanded code showing mechanism for defining
commit/abort handlers.

Open nesting on the other hand requires API support.
Following the style of ScalaSTM, in Hyflow2 we propose
the following syntax (see Figure 7):

• An open nested transaction should be started with atomic.open
. The body of the transaction follows in braces, just like
for regular transactions.

• Following the transaction’s body two optional blocks
may be specified. These blocks are introduced by on-
Commit and onAbort, and represent the transaction’s
commit and abort handlers, respectively. The handlers
themselves are executed as open-nested transactions, so
they must accept the implicit transaction context argu-
ment. If both handlers are present, their order is not im-
portant.

• If an open-nested transaction requires the acquisition of
an single abstract lock which is known in advance, the
lock’s identifier can be passed as a string argument to
atomic.open . The lock will be acquired before the open-
nested transaction can commit, and will be released au-
tomatically as part of the transaction’s abort and commit
handlers. These handlers do not need to be present in the
code, the lock will be released anyway (see Figure 7).

• For any other abstract lock scenarios, the locks must be
acquired within the sub-transaction’s body using acquire-
AbsLock. These locks too will be automatically released
as part of the sub-transaction’s abort and commit han-
dlers.

• If for any reasons an abstract lock should be kept beyond
the sub-transaction’s commit or abort, holdAbsLock must
be called in the commit and/or abort handler. Any such
lock will be propagated to the innermost open-nested
ancestor transaction and will be released upon its commit
or abort.

4.3 Discussion and Language Mechanisms
We consider atomic.open a semantically cleaner way of de-
noting open-nesting transactions than the previously sug-
gested openatomic keyword [15]. Our syntax logically breaks
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down into two terms. The first term, atomic is the same as the
marker for regular atomic blocks. The second term, open, ap-
pears as a property of the resulting transaction. By contrast,
openatomic as a separate keyword, gives the impression the
effect is totally unrelated with that of the atomic keyword.

When evaluating an atomic.open block, the open method
is called on the atomic object of type TxnExecutor, and it re-
ceives the function to be executed transactionally as a param-
eter. Declaring the onCommit and onAbort handlers is more
complex: blocks are evaluated last to first, wrapping what
is above in a special OpenNestingBlock container object,
and calling onCommit/onAbort on this object. The object is
saved in a thread-local variable. When finally, atomic.open
is invoked, it checks if there is any OpenNesingBlock object
registered for the current thread and uses it, if any. See Fig-
ure 8 for an expanded example. This mechanism is also used
in ScalaSTM to implement the orElse keyword (orElse pro-
vides the means to execute alternative atomic blocks if the
original ones fail).

4.4 Configurable nesting
For testing reasons users may need to execute certain atomic
blocks under both flat/closed and open nesting models. Us-
ing the previously described API, switching between models
would require modifying the source code and recompiling.
To avoid this situation, we support an additional method for
launching a transaction, ”atomic.config”. An atomic block
marked with atomic.config will determine its nesting model
at run-time, by reading it from a configuration value. For
completeness, the choice between flat and closed nesting
is explicit. Atomic.config allows defining abort and commit
handlers just like atomic.open. If the block executes with
closed or flat nesting, these handlers will simply be ignored.

5. Java Compatibility API
Scala provides excellent interoperability with Java. As a
result, many of the operations described above will just
work when invoked from Java code either directly, or in
a slightly different form (for example, methods ref1.get,
ref1.set, Hyflow.dir.open, retry becomes Txn.retry, etc.). Sev-
eral of the more advanced Scala features that we use in the
Hyflow2 API are however not supported from Java code,
so we need to provide additional mechanisms to obtain the
same results.

5.1 Defining Transactions
ScalaSTM already provides a way for starting transactions
from Java which uses the Callable and Runnable interfaces
for defining the transaction’s body (Figure 9). The transac-
tion context argument isn’t used anymore – instead, all trans-
actional operations need to dynamically determine the con-
text object at run-time. If no transaction exists for the current
thread, a single-operation transaction is created automati-
cally. This mechanism, however, does not define the abort
and commit handlers required for open-nesting.

STM.atomic(new Runnable {

public void run() {

Counter ctr = Hyflow.dir().<Counter>open("ctr")

ctr.set(ctr.get() + 1);

} } );

Figure 9. ScalaSTM Java compatibility API.

new Atomic<Boolean> {

public Boolean atomically(InTxn txn) {

Counter ctr =

Hyflow.dir().<Counter>open("ctr");

ctr.value.set(ctr.value.get() + 1);

return true;

}

public void onCommit(InTxn txn) {

// Commit handler, omit if not needed

}

public void onAbort(InTxn txn) {

// Abort handler, omit if not needed

}

}.execute();

Figure 10. Hyflwo2 Java compatibility API using the
Atomic class.

To support open-nesting, Hyflow2 provides an Atomic
abstract class with three methods: atomically, onCommit and
onAbort. User code must subclass it and provide at least the
implementation for atomically (see Figure 10). If implemen-
tations are provided for the other two methods, they will be
used as commit and abort handlers. Unlike ScalaSTM’s Java
API, a transactional context object is passed to the transac-
tion as an argument. Our reasons for doing so will become
clear in Section 5.2.

5.2 Defining Hyflow2 Objects
Inheriting from a Scala trait in Java code is non-trivial. To
allow a simpler way of defining Hyflow2 Objects in the Java
API, we provide an abstract class called jHObj, which users
must subclass.

Fields may be declared in two ways, which we named
the Scala and the Java styles. This decision influences how
the fields are later accessed from both Scala and Java code.
The Scala way of declaring fields was already described in
Section 3.2, and only differs cosmetically (see Figure 11).
However, choosing to declare fields the Scala way makes
Java code accessing that field more verbose: either the trans-
action context object needs to be passed explicitly to each
Ref.get / Ref.set call (this object is available by sub-classing
the Atomic abstract class as mentioned in Section 5.1), or
Ref Views must be used to determine the context at run-time
by calling Ref.single.get or Ref.single.set instead of simply
Ref.get or Ref.set. The Scala style of declaring Refs is thus
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public class Counter extends jHObj {

Ref<Integer> value = field(0);

public Counter() {

Hyflow.dir().register(this);

}

// This method is an example transaction. It is

not part of the Hyflow2 Object definition.

public static void increment(final String id) {

new Atomic {

public void atomically(InTxn txn) {

Counter ctr =

Hyflow.dir().<Counter>open(id);

// The first way of accessing Refs works

only from an Atomic class due to the

txn parameter

ctr.set(ctr.get(txn) + 1, txn);

// The second way of accessing Refs also

works using a Runnable

ctr.single.set(ctr.single.get() + 1);

}

}.execute();

} }

Figure 11. Scala-style Hyflow2 Object definition in Java.
Notice how accessing Refs in this style is more verbose.

public class Counter extends jHObj {

Ref.View<Integer> value = jfield(0);

public Counter() {

Hyflow.dir().register(this);

}

// Example transaction

public static void increment(final String id) {

STM.atomic(new Runnable {

public void run() {

Counter ctr =

Hyflow.dir().<Counter>open(id);

ctr.set(ctr.get() + 1);

} } );

} }

Figure 12. Java-style Hyflow2 Object definition in Java.
Compact Ref access.

recommended when the application is predominantly written
in Scala.

For applications written mostly in Java (or even Java-
only), the Java style of declaring fields makes Java code
more compact. Fields are declared using jfield instead of
field and their type becomes Ref.View instead of Ref (see
Figure 12). Java code can now access the fields using the
shorter ref1.get(), etc. Note that the actual method invoked
is now Ref.View.get() and determines the transaction con-
text object dynamically at run-time. When using the Java
style, the Scala compiler will not complain if a Ref.View
is accessed outside an atomic block. Instead, it would fire a
single-operation transaction. Also, performance may be af-
fected slightly due to the overheads of repeated thread-local
variable lookups.

6. Mechanisms and Implementation
Our implementation uses the actor model via the Akka li-
brary.

6.1 Actors and Futures
Akka is a very efficient actor model implementation for the
JVM. The actor model can lead to very fast implementations
because it reduces the need for thread context switching. Ac-
tor libraries generally do their own user-space scheduling, as
opposed to relying on the OS scheduler, and prohibit block-
ing function calls (such as disk access. etc). Instead, actors
send messages to each other and respond to the messages
they receive – it is an event-based programming model.

An important part of Akka’s interface are Futures. Fu-
tures represent the result of a computation that is expected
to complete at some later time. Futures can be used when a
thread sends a request to an actor and expects a response.
Instead of waiting for the response to arrive, the method
sending the request immediately returns a Future object. The
thread can register a callback to be executed when the re-
sponse is received, query the Future periodically, or even
block for the result. Computations can also be composed by
chaining or aggregating Futures, thus reducing the number
of times a thread needs to block and improving performance.
Futures, as well as actors, receive and process messages and
events using a configurable thread-pool.

6.2 Network Layer
Akka actors provide network transparency. They can seam-
lessly communicate across JVM and machine boundaries.
Actor instances are identified using ActorRef objects. Actor-
Ref s can be sent across the network while still maintaining
their association with the correct actor. ActorRef s can then
be used on the remote machine to communicate to the origi-
nal actor.

Internally, Akka uses Netty for communicating over the
network. Netty is a fast, asynchronous event-driven network
application framework. It uses the non-blocking, high per-
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Figure 13. Hyflow2 system diagram

formance Java New I/O API. Netty also uses a configurable
thread-pool for servicing received messages.

6.3 Serialization
Serialization is the process of converting an object to a for-
mat that can be sent through the network, and back. Tradi-
tionally, Java objects must implement a Serializable inter-
face in order to enable this functionality. The standard Java
serializer however is notorious for its weak performance.
Fortunately, Akka provides an API for custom serializers,
so we implemented an adapter for the Kryo library[5]. Kryo
is one of the fastest JVM serialization frameworks, and is
compatible with Scala.

6.4 Hyflow2 Architecture
Hyflow2 has a modular architecture. Depending on their
function, module implementations need to comply to cer-
tain interfaces. Hyflow2 currently provides the following in-
terfaces: lock service, object store, object directory, barrier
service and cluster manager. A module implementation con-
sists of a singleton object that complies to one of these inter-
faces and is used for sending requests to the module and an
actor which services such requests. Modules communicate
between each other and with the transactions’ threads using
message passing and Futures.

The lock service module handles acquiring, releasing and
verifying the status of object and/or field locks. The ob-
ject store module holds the objects themselves and handles
queries, updates and validations (version checks). Due to
their tight coupling, the lock service and object store can
be combined in a single module. The object directory tracks
object locations: it handles queries, updates, and it can also
send notifications to interested transactions when an object
is updated. The cluster manager tracks which nodes partici-
pate in Hyflow2 transactions, and is currently implemented
by delegating a coordinator node (in the future, gossip pro-
tocols could be implemented). The barrier service lets mul-
tiple nodes coordinate their execution and is used mostly for
benchmarking. An additional module is tasked with gather-

ing statistics from all participating nodes. Figure 13 shows a
system diagram which includes Hyflow2 modules and their
interactions with the transaction threads and underlying li-
braries.

Each node has a router actor which serves as a gateway
for all request messages (response messages do not pass
through the gateway). The router actor dispatches messages
to the appropriate module based on the message’s type (Java
class). This design allows every message to contain addi-
tional payload data, which can be processed in a consistent
way. For example, the Transactional Forwarding Algorithm
(TFA) which Hyflow2 implements needs to attach an integer
(the node-local clock value) to each message sent over the
network [18]. Instead of requiring every module to attach
payloads to all the messages they send and receive, payloads
are handled automatically in the message’s base class con-
structor on the sender node, and is processed on the receiver
node by the router actor.

6.5 Conditional Synchronization
Hyflow2 is the first DTM implementation to support dis-
tributed conditional synchronization. This feature was im-
plemented by maintaining a waiting list of transactions
which are blocked on each object. When they execute, trans-
actions record all objects they access in the transaction’s
read-set. When a transaction calls retry, it adds itself the
waiting lists of all objects which it has previously read, then
blocks. Waiting lists are maintained by the Object Direc-
tory. When an object is updated, the Directory is notified,
and in turn notifies all transactions on that object’s waiting
list. Because the message adding a transaction to an object’s
waiting list may arrive after the object is updated, the object
version is checked as well: if the transaction is waiting on an
old version of the object, the notification is sent right away.
Otherwise, a transaction could be waiting unnecessarily for
a condition that is already satisfied.

6.6 Performance
As previously mentioned, thread context switches and net-
work round-trip time are important bottlenecks. The choice
of libraries we used in Hyflow2 was made with the purpose
of addressing these issues. Akka and Netty are event-driven
libraries and attempt to minimize thread context switches.
We configured their internal thread pools to a minimum size
that produces the greatest performance. Also, we specifically
targeted serialization in our quest for performance because it
is on the critical path of sending a message over the network.

7. Experimental evaluation
Hyflow2 was evaluated experimentally using a suite of one
pseudo-macro-benchmark (bank monetary application) and
three micro-benchmarks (counter and the skip-list and hash-
table data structures). Since in this paper we do not seek to
evaluate the TFA algorithm but rather the framework’s per-
formance, we compare against the original Hyflow which
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Figure 14. Throughput on Bank for 20% read-only transactions. 14(a) shows absolute values for both Hyflow and Hyflow2.
14(b) shows the relative improvement in Hyflow2.
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Figure 15. Throughput on Bank with 50% and respectively, 80% read-only transactions.

also implements TFA. Comparisons between Hyflow and
other distributed transactional memory libraries implement-
ing different algorithms are available elsewhere [18], and
have shown that Hyflow outperforms competitors under
most circumstances.

Experiments were run on a testbed featuring 48 identical
nodes. Each node is an AMD Opteron processor running
at 1700MHz. The operating system used is Ubuntu Linux
10.04 Server. Every node communicates with every other
node via TCP links and the average end-to-end latency is
1ms. The network is not saturated.

The JVM used is the 64-bit HotSpot(TM) Server VM.
Benchmarks were run first with Just-in-Time (JIT) compila-
tion disabled (interpreted mode) and next with JIT enabled.
Each test was allowed a warm-up period to compensate for
compilation and class loading overheads before measure-
ment was started.

Figure 16 shows normalized transactional throughput for
each of our benchmarks. Each bar in the plot is the average
of a number of measurements:

• Up to eight node count samples between two and 48
nodes.
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Figure 17. Throughput on Skip-listfor 20% read-only transactions. 17(a) shows absolute values for both Hyflow and Hyflow2.
17(b) shows the relative improvement in Hyflow2.
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Figure 18. Throughput on Skip-list with 50% and respectively, 80% read-only transactions.

• Up to three contention levels determined by the amount
of read-only transactions (between 0 and 80%).

• Up to three repetitions of each experiment.

We can notice that under interpreted mode, the through-
put difference between Hyflow and Hyflow2 are not very
significant, and vary between -20% and +25%. In compiled
mode however, Hyflow2 is strikingly faster: the average
speed-up is between 50% and 300%.

Figures 14 and 15 provide details on one of the bench-
marks, bank. The figures follow the throughput as the num-
ber of nodes is increased from two to 48 nodes. Hyflow2 is

very fast at a low number of nodes – up to 7 times faster
than Hyflow with JIT enabled. When the number of nodes
is in middle of the range, the improvement is only around
30-60%. Then, as more nodes are added, Hyflow2’s perfor-
mance benefit keeps steadily increasing up to just bellow
100%. When JIT is disabled the trends are similar, but im-
provements are only in the 0-20% range (and even negative
in limited cases).

Figures 17 and 18 show the same trends for the Skip-list
benchmark.
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Figure 16. Summary of relative performance across bench-
marks.

8. Related Work
DecentSTM [8] is a decentralized STM algorithm providing
the snapshot isolation consistency guarantee. The reference
implementation provided by the authors does not function in
a real distributed setting, but rather emulates it using threads.

GenRSTM [10] uses group communication services to
implement a distributed STM. Its API uses Box containers,
not unlike Hyflow2’s Refs. GenRSTM is modular and can
be used to implement multiple STM algorithms.

Both these competitor DTM frameworks were compared
against Hyflow in [18].

9. Conclusion
We introduced Hyflow2, a high performance distributed
transactional memory for the JVM. Hyow2 is the first Dis-
tributed Transactional Memory implementation with sup-
port for Scala, interoperability with Java, and key DTM
features including nested transactions and distributed con-
ditional synchronization. We focused on performance, and
managed to significantly improve transactional throughput
compared to the original Hyflow. Future work may include
support for checkpointing as an alternative to closed nesting,
configurable field/object level locking and alternative atomic
blocks with distributed selective waiting.
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