
Opacity vs TMS2: Expectations and Reality
[Technical Report]

Sandeep Hans, Ahmed Hassan, Roberto Palmieri, Sebastiano Peluso, and
Binoy Ravindran

Virginia Tech

Abstract. Most of the popular Transactional Memory (TM) algorithms
are known to be safe because they satisfy opacity, the well-known cor-
rectness criterion for TM algorithms. Recently, it has been shown that
they are even more conservative, and that they satisfy TMS2, a strictly
stronger property than opacity. This paper investigates the theoretical
and practical implications of relaxing those algorithms in order to allow
histories that are not TMS2. In particular, we present four impossibil-
ity results on TM implementations that are not TMS2 and are either
opaque or strictly serializable, and one practical TM implementation
that extends TL2, a high-performance state-of-the-art TM algorithm, to
allow non-TMS2 histories. By matching our theoretical findings with the
results of our performance evaluation, we conclude that designing and
implementing TM algorithms that are not TMS2, but safe, has inherent
costs that limit any possible performance gain.

1 Introduction

Transactional Memory (TM) [14] is a programming abstraction that ease the de-
velopment of concurrent applications. Most of the popular TM algorithms (e.g.,
TL2 [4], NOrec [3], and LSA [19]) are proved to be correct because they do
not violate opacity [11], the well-known criterion that requires each transaction
(even a non-committed one) to i) read only committed values, and ii) behave as
atomically executed at a single point between its beginning and its completion.
However Doherty et al. [6] showed that most of the TM implementations that
aim at satisfying opacity actually guarantee a strictly stronger correctness crite-
rion, known as TMS2. In practice, TMS2 implementations reject executions that
would not violate opacity while seeking for a tradeoff between the performance
and complexity of the concurrency control implementation.

In this paper, we evaluate the costs and implications of having TM imple-
mentations that guarantee weaker conditions than TMS2, such as opacity. In
particular, we focus on the simple execution pattern used in [6] to distinguish be-
tween TMS2 and opaque TM implementations. We name this execution pattern
as reverse-commit anti-dependency (RC-anti-dependency in short). Intuitively,
we say that a TM implementation allows RC-anti-dependency if it accepts the
execution in Figure 1, where there is an anti-dependency between two committed
update transactions T1 and T2 (i.e., T2 overwrites T1’s previous read) and their

p1 T1 r(x, 0) w(y, 1) C

p2 T2 r(x, 0) w(x, 1) C

α β α′

Fig. 1. An execution with RC-anti-dependency: r(x, 0) denotes the read operation on
x, w(x, 1) denotes the write operation on x; C denotes a successful commit operation.

commit order is reversed with respect to the anti-dependency (i.e., T2 starts its
commit phase and completes it before T1 does).

Designing a TM implementation that includes RC-anti-dependency looks ap-
pealing because, on the one hand, the execution pattern looks simple to accept,
and on the other hand, performance is likely to improve thanks to the pos-
sibility of committing transactions that otherwise would abort due to a read
invalidation. That is why embracing this pattern was one of the goals of previ-
ous attempts to increase the number of accepted executions, such as permissive
TMs [9, 16], and TWM [5]. However, none of those attempts isolated the advan-
tages and limitations of allowing RC-anti-dependency in a TM implementation.
Specifically, permissive TMs aims at allowing all the possible schedules of ex-
ecution within a certain correctness guarantee; and the latter relies on a class
of input-acceptance [8] that mixes anti-dependency with multi-versioning and
non-blocking read-only transactions. This paper is the first one that isolates
RC-anti-dependency in order to assess the need of designing TM implementa-
tions that are not TMS2. Specifically, we provide a set of impossibility results
on allowing RC-anti-dependency, and one possibility result, which is a concrete
TM implementation, built on top of TL2, that allows RC-anti-dependency and
confirms our theoretical claims.

We prove that in any strictly serializable [18] minimally progressive [11] TM
implementation that allows RC-anti-dependency: i) read operations of update
transactions must be visible; ii) either read-only transactions or the read-only
prefix (i.e., all read operations before the first write) of update transactions
must be visible. We also prove that if a strictly serializable TM that allows
RC-anti-dependency has obstruction-free [13] read-only transactions, they must
be visible. Finally, we prove that if we consider opacity rather than strict seri-
alizability, the visibility of read operations must be immediate and cannot be
deferred to the commit phases of transactions. Table 1 summarizes our results.
Due to space constraints, we defer the formal proofs to Appendix B.

Consistency Progress Impossibility
Theorem 1 Strict Serializability Minimal Progressiveness Invisible Read Operations

(update transactions)
Theorem 2 Strict Serializability Minimal Progressiveness Invisible Read-only Transactions

Invisible Read Executions
Theorem 3 Strict Serializability Obstruction-freedom

(read-only transactions)
Invisible Read-only Transactions

Theorem 4 Opacity Minimal Progressiveness Invisible Read Executions

Table 1. Summary of the impossibility results presented in the paper.

As a possibility result, we present the design and implementation of a TM,
named TL2-RCAD, which allows executions that are not TMS2, including the
one in Figure 1, and limits the overhead of making visible reads by deploying spe-
cific algorithmic optimization. Evaluating TL2-RCAD we found that, contrary to
expectations, the overall percentage of potential RC-anti-dependency executions
is small. Thus the performance gain (if any) of allowing them is very limited in
all the tested scenarios that include STAMP [17], the standard benchmark suite
for TM, and even customized micro-benchmarks.

The paper is organized as follows. In Section 2, we introduce our basic model
definitions. In Section 3, we present our impossibility results. TL2-RCAD’s de-
sign is presented in Section 4, and its performance results are analyzed in Sec-
tion 5. Section 6 overviews the related work, and Section 7 concludes the paper.

2 Preliminaries

System and Transaction Execution Model. We consider an asynchronous
shared memory system composed of N processes p1, . . . , pN that communicate
by executing transactions on shared objects, which we call transactional objects,
and may be faulty by crashing (i.e., slow down or block indefinitely). We use
the term transactional objects, or equivalently objects, to distinguish them from
base objects, which are used to encapsulate any information (data and metadata)
associated with transactional objects.

Each transaction is a sequence of accesses, reading from and writing to the
set of objects. In particular a transaction Tj accesses objects with operations
opij ∈ {read,write, begin, tryAbort, tryCommit}, each being a matching pair of in-
vocation Invopij and response Resopij actions. For a more compact representation
of both the invocation and the response of an operation, we also use the notation
Tj.opij → val, where val is the value returned by its response action.

The specification of all possible operations of a transaction Tj is the following:
Tj.read(x) → val is a read operation by Tj of an object x, which returns either
a value in some domain V or a special value aborted /∈ V ; Tj.write(x, v) → val
is a write operation by Tj on an object x with a value v ∈ V , which returns
either ok or aborted; Tj.begin() → val is the begin operation by Tj , which
returns either ok or aborted; Tj.tryAbort() → val is the request of an abort
by Tj , which returns aborted; Tj .tryCommit() → val is the request of a com-
mit by Tj , which returns either committed /∈ V ∪ {aborted} or aborted. We
also use the following notation: Tj.read(x), to indicate Tj.read(x) → val, with
val 6= aborted; Tj.write(x, v), to indicate Tj.write(x, v) → ok; Tj .begin(), to in-
dicate Tj .begin() → ok; Tj .abort(), to indicate Tj .tryAbort() → aborted; and
Tj .commit(), to indicate Tj .tryCommit()→ committed.
Histories and implementations. A history H of a TM implementation is
a (possibly infinite) sequence of invocation and response actions of operations.
Let tx(H) denote the set of transactions in H. A history H is well-formed if for
all T ∈ tx(H): i) T begins with an invocation of begin(); ii) every invocation
in T is followed by a matching response; iii) T has no actions after a response

has returned either aborted or committed; and iv) T cannot invoke more than
one begin operation. For simplicity, we assume that all histories are well-formed.
Two histories H and H′ are equivalent if tx(H) = tx(H′), and for every process
p, H|p = H′|p, where H|p denote the projection of actions of process p in H.

The read-set of a transaction T in history H, denoted as rset(T), is the set of
objects that T reads in H; the write-set of T in history H, denoted as wset(T), is
the set of objects that T writes to inH. T is an update transaction if wset(T) 6= ∅;
otherwise, T is a read-only transaction.

A TM implementation (TM for short), denoted by T , provides processes
with algorithms for implementing read, write, begin, tryCommit and tryAbort of a
transaction. T is defined as a set of well-formed histories, which are the histories
that are produced by T . We denote by H1 · H2, the concatenation of histories
H1 and H2, T1 ·T2, the concatenation of transactions T1 and T2, and opij ·opzk,
the concatenation of operations opij and opzk.

Complete histories and real-time precedence. A transaction T ∈ tx(H)
is complete if T ends with abort or committed in H. A transaction T is pending
in H if the last action of T is the invocation of tryCommit. A transaction T is
committed (resp., aborted) in H if the return value of the last operation of T is
committed (resp., aborted). A transaction T is live inH if it is neither pending nor
completed. The history H is complete if all transactions in tx(H) are complete.

Given two transactions Tj and Tk, and two operations opij and opzk in H by
Tj and Tk, respectively, we say that opij precedes opzk in the real-time order of
H, denoted opij ≺H opzk, if the response action Resopij precedes the invocation
action Invopzk in H. Otherwise, if neither opij ≺H opzk nor opzk ≺H opij ,
then opij and opzk are concurrent in H. We overload the notation and say, for
transactions Tj ,Tk ∈ tx(H), that Tj precedes Tk in the real-time order of H,
denoted Tj ≺H Tk, if Tj is complete in H and the last action of Tj precedes
the first action of Tk in H. If neither Tj ≺H Tk nor Tk ≺H Tj , then Tj and
Tk are concurrent in H. A history H is sequential if there are no concurrent
transactions in H.

For simplicity, we assume that each history H begins with a complete trans-
action T0 that writes initial values to all objects and commits before any other
transaction begins in H. A read operation T.read(x) in a complete and sequen-
tial history H is legal if it returns the latest value written by T, if T writes on
x before T.read(x), otherwise it returns the latest value written by a committed
transaction. A complete and sequential history H is legal if every read operation
in H, which does not return aborted, is legal.

Configuration, Step, and Execution. A configuration is a tuple characteriz-
ing the status of each process, and of the base objects at some point in time. On
the other hand, a step φτ performed by a process encompasses a local computa-
tion, the application of a primitive operation (e.g., CAS) to a base object, and a
possible change to the status of the process. Any step φτ is executed atomically,
and it is generated by an operation opij of a transaction Tj , hence also denoting
the step as φ

opij
τ . In general, an operation opij of a transaction can generate one

or more steps φ
opij
τ , such that, for each opij , τ , one of the following conditions

is true: φ
opij
τ is the invocation Invopij ; φ

opij
τ is the response Resopij ; φ

opij
τ is

executed after Invopij and before Resopij .

An execution interval is a sequence Ψτ · φτ · Ψτ+1 · φτ+1 · . . . that alternates
configurations Ψτ and steps φτ , where Ψτ · φτ generates the configuration Ψτ+1.
A step φτ by process pk is legal if its primitive operation applied to a base object
follows the object’s sequential specification [15]. Moreover, a configuration Ψτ is
quiescent if, for any transaction Ti, Ψτ is not after the first operation of Ti and
before its completion.

We define an execution E as an execution interval starting from an initial
configuration Ψ0. We also say that two executions are indistinguishable to a
process pk if i) pk performs the same sequence of steps in both the executions,
and ii) the steps by pk are legal.

Since an execution E is actually a low-level history of configurations and
steps that are generated by operations of transactions in a history H, we may
also want to derive a history H from one of the possible executions, say E. In
particular, given an execution E, we define E|H as the history derived from E,
where ∀i, j, k, we remove all the configurations and the steps φ

opij
k such that

φ
opij
k 6= Invopij ∧ φ

opij
k 6= Resopij .

Invisible Transactions. Given an execution E and a set S of steps in E, we
use the notation E\S to indicate the execution derived from E by removing only
the steps in S and all the configurations generated by those steps. Also, given
an execution E, and an operation opij by transaction Tj , we define S

opij
E as the

set {φopijτ |φopijτ ∈ E}. Given an execution E and a process pk that executes a
transaction Tj in E, we say that a set of operations Q of Tj is invisible in E if the
executions E and E \(

⋃
opij∈Q S

opij
E) are indistinguishable to every process ph6=k

that takes steps in E. Therefore, we define a read-only transaction Tj as invisible
if, for any possible execution E, the set of all the operations of Tj are invisible
in E. Analogously, we say that a transaction has invisible read operations if, for
any possible execution E, the set of the read operations of Tj are invisible in E.
Moreover, we say that a transaction has an invisible read execution if it is a live
transaction, and it has invisible read operations.

Consistency. Serializability [18] requires that for a history H to be serializable,
there must exist a complete and sequential legal history S that is equivalent
to all the committed transactions in H, and strict-serializability requires S to
preserve the real-time order in H. Opacity [10, 11], informally, requires that for a
history H to be opaque, there must exist a complete and sequential legal history
S which is equivalent to a completion of H, and preserves the real-time order
in H. Transactional Memory Specification 2 (TMS2) [6] is a stronger condition
than opacity, and requires S to preserve the order of non-concurrent commit op-
erations of committed update transactions. Transactional Memory Specification
1 (TMS1) [1, 6] is weaker than opacity, and requires H to be strictly serializ-
able, and for each operation in H, there must exist an equivalent legal history,
and restricts this history to include all the committed transaction preceding the
transaction of the operation in real-time order.

Progress guarantees. We say that a process pi runs with no step contention
in an execution interval α if α contains steps by pi, and there are no other
processes different from pi that take steps in α. We also say that a transaction Tk
(resp. opik) that is executed by a process pi in an execution E does not encounter
step contention in E if pi runs with no step contention in the minimal execution
interval α that contains all the steps of Tk (resp. opij) in E. A TM guarantees
obstruction-freedom [13] if, for every execution E that is generated by the TM,
a transaction Ti is forcefully aborted in E only if Ti encounters step contention
in E. On the other hand, a TM guarantees minimal progressiveness [11] if, for
every execution E that is generated by the TM, a transaction Ti is forcefully
aborted in E only if Ti either encounters step contention in E or it does not start
from a quiescent configuration. We assume that operations are obstruction-free.

3 The Cost of Reverse-Commit Anti-Dependency

We say that a TM implementation T allows RC-anti-dependency if the history
shown in Figure 1 is a history of T . More formally:

Definition 1. Let Hrcad = Hα ·Hβ ·Hα′ , where Hα = Ti.begin() ·Ti.read(x)→
v0, Hβ = Tj .begin() · Tj .read(x)→ v0 · Tj .write(x, vj) · Tj .commit(), and Hα′ =
Ti.write(y, vi) ·Ti.commit(), with i 6= j and x 6= y. We say that a TM implemen-
tation T allows RC-anti-dependency iff Hrcad ∈ T .

We use Hrcad to prove our impossibility results. Note that Hrcad is accepted
by all known non-TMS2 implementations, e.g., TWM, as well as our TL2-RCAD
algorithm. Intuitively, any TM implementation that accepts Hrcad is expected
to include more histories that are not TMS2.

Our first result shows that allowing RC-anti-dependency in strictly serializ-
able TMs implies an impossibility on having invisible read operations of update
transactions.

Theorem 1. A TM T that allows RC-anti-dependency cannot guarantee both
strict serializability and minimal progressiveness if update transactions have in-
visible read operations.

The intuition of the proof can be inferred from Figure 1. In order to allow
RC-anti-dependency in Figure 1 and to guarantee that the history is strictly
serializable, T2 cannot read any object written by T1. However, if read operations
are invisible, it is impossible for T1 to know whether such a read exists or not.
We show that such a result holds even with a weak progress guarantee, like
minimal progressiveness.

This result justifies the design of TM implementations like TWM [5], as
well as our TL2-RCAD algorithm, which both allow RC-anti-dependency by
making read operations of each update transaction visible at a certain point
of the transaction execution. Indeed, in both implementations read operations
of update transactions remain invisible until the execution of the transactions’

p1 T1 r(x, 0) w(y, 1) C

p2 T2 r(x, 0) w(x, 1) C

p3 T3 r(x, 1) r(y, 0) C
α β γ α′

Fig. 2. For the transaction T1, since read only transactions are invisible, this execution
is indistinguishable to p1 and p2 from the execution in Figure 1.

p1 T1 r(x, 0) w(y, 1) C

p2 T2 r(x, 0) w(x, 1) C

p3 T3 r(x, 1) r(y, 0)

α β γ α′

Fig. 3. For the transactions T1 and T2, since read operations are invisible, this execu-
tion is indistinguishable to p1 and p2 from the execution in Figure 1.

commit phase, and then read operations are forced to be visible during the
commit phase. This means, based on our definitions, that both implementations
have invisible read executions.

Having invisible read executions is weaker than having invisible read opera-
tions, because the former does not prevent a transaction from making its read
operations visible after the invocation of either tryCommit or tryAbort. However,
this relaxation for update transactions requires having visible read-only trans-
actions, which is implied by our second impossibility result (Theorem 2).

Theorem 2. A TM T that allows RC-anti-dependency cannot guarantee both
strict serializability and minimal progressiveness if i) update transactions have
invisible read executions, and ii) read-only transactions are invisible.

The proof intuition is based on the indistinguishability of the two histories in
Figures 1 and 2, due to the invisibility of the read-only transaction T3. Specif-
ically, if T3 is invisible, T1 has to behave in Figure 2 as in Figure 1. Also, the
invisible read execution of T1 gives both T2 and T3 the illusion of executing
without concurrency, which means that they must commit due to minimal pro-
gressiveness. Therefore, the history in Figure 2, which is not strictly serializable,
has to be accepted by T .

Theorem 1 and Theorem 2 give two impossibility results mainly on update
transactions. Therefore, a natural question would be: can we free the TM from
any constraint on the invisibility of read operations of update transactions, and
have non-TMS2 implementations that guarantee strict serializability? Theorem 3
shows that the answer is still “no”, in case read-only transactions are invisible
and obstruction-free.

Theorem 3. A TM T that allows RC-anti-dependency cannot guarantee both
strict serializability and minimal progressiveness if read-only transactions are
invisible and obstruction-free.

The intuition of the proof is also based on the indistinguishability of the two
histories in Figures 1 and 2, due to the invisibility of the read-only transaction
T3. Specifically, if T3 is invisible, both T1 and T2 must behave in Figure 2 as
they do in Figure 1. In this case, although the read-only transaction T3 does not
have the illusion of running without concurrency, it has to commit because we
assume that read-only transactions are obstruction-free, and T3 runs without
any step contention. Therefore, the history in Figure 2 has to be accepted by T .

All the previous theorems assume strictly serializable TM implementations.
Theorem 4, on the other hand, shows how the impossibility results will change if
we rather aim for opacity than strict serializability. Specifically, we show that in
order to have TM implementations that guarantee opacity and allow RC-anti-
dependency, any read operation of any transaction (whether it is read-only or
not) must be visible at the time the operation is executed. Our investigation
on the relation between guaranteeing opacity and allowing RC-anti-dependency
is motivated by some TM implementations that allow RC-anti-dependency and
violate opacity, such as TWM and TL2-RCAD.

Theorem 4. A TM T that allows RC-anti-dependency cannot guarantee both
opacity and minimal progressiveness if transactions have invisible read execu-
tions.

The intuition of the proof is based on the indistinguishability of the two
histories in Figures 1 and 3, due to the invisibility of the read executions. Specif-
ically, based on the definition of invisible read executions, T3 is invisible since
it is live and it did not execute any write operation yet. Thus, both T1 and T2

must behave in Figure 3 as they do in Figure 1. Furthermore, the invisible read
execution of T1 gives both T2 and T3 the illusion of executing without concur-
rency, which means that they cannot abort due to minimal progressiveness. As
a result, the history in Figure 3 has to be accepted by T , which violates opacity.
Note that T3 can abort later, in order to preserve strict serializability after T1

commits. However, aborting T3 does not make the history opaque.

4 TL2-RCAD: a TM implementation that allows
RC-anti-dependency

In the previous section, we showed a set of impossibility results on allowing
RC-anti-dependency in a TM implementation. In this section, we show a pos-
sibility result: a modified version of TL2 [4], named TL2-RCAD, that allows
RC-anti-dependency and therefore deploys visible read operations. Algorithm 1
shows the main procedures of TL2-RCAD. The entire pseudo code is included
in Appendix A.

TL2 uses a shared timestamp, which is atomically incremented anytime an
update transaction commits and locally copied into the start timestamp at the
beginning of a transaction execution. This timestamp is used by read operations
to decide if the version available of a shared object is compliant with the transac-
tion’s history. At commit time, update transactions undergo a two-phase locking

on written locations, and modifications are applied to the shared state only if all
versions of read locations are still valid. Versions of locations are stored along
with locks in a shared ownership record (orec) table.

One of the main issues in TL2 is that the live validation (i.e., the one made
before returning from a read operation) is conservative: a transaction Ti aborts
if the version of the orec to be read is greater than Ti’s start timestamp. Using
such a scheme to build TL2-RCAD would reduce the chance for allowing RC-anti-
dependency because only few transactions with a potential RC-anti-dependency
would reach the commit phase. Therefore we use a variant of TL2 that extends
Ti’s starting timestamp by using the technique presented in [19] (lines 17-21).

To the best of our knowledge, all TM algorithms that allow RC-anti-dependency
are multi-versioning. Multi-versioning has its own practical limitations (e.g., ex-
pensive memory management) that makes it not a candidate in some real appli-
cations. TL2-RCAD is the first practical single-version TM algorithm that allows
RC-anti-dependency. In Section 6, we discuss the differences between TL2-RCAD
and TWM [5], a multi-versioning algorithm that allows RC-anti-dependency.

Algorithm 1 TL2-RCAD

1: procedure Start()
2: tx.start = global timestamp
3: end procedure
4: procedure Read(addr)
5: val = tx.write-set.find(addr)
6: if val != NULL then
7: return val
8: orec = getOrec(addr)
9: while true do
10: val = *addr
11: o = orec
12: if o.lock then
13: continue
14: if o.wv ≤ tx.start then
15: tx.readset.append(orec)
16: return val
17: new start = global timestamp
18: for each (orec) in tx.readset do
19: if orec.wv > tx.start then
20: Abort()

21: tx.start = new start
22: end procedure

23: procedure Write(addr, value)
24: tx.writeset.add(addr, value)
25: end procedure

26: procedure CommitRW()
27: LockAbortIfLockedNotByMe(tx.writeset)
28: for each (r orec) in tx.readset do
29: if LockedNotByMe(r orec) then
30: Abort()

31: for each (r orec) in tx.readset do
32: if r orec.wv > tx.start then
33: CheckAntiDep()
34: break
35: WriteBack(tx.writeset)
36: tx.end = AtomicInc(global timestamp)
37: UpdateVersions()
38: Unlock(tx.writeset)
39: end procedure

40: procedure CommitRO
41: AntiDepHandle()
42: end procedure

TL2-RCAD Metadata. Based on our impossibility results, a mandatory step
to allow RC-anti-dependency and guarantee at least strict serializability is to
expose more metadata to make read-only transactions and the read operations
of update transactions visible. TL2-RCAD exposes per-orec metadata for update
transactions and a global flag for read-only transactions.

More in details, each orec is enriched with a read version, named orec.rv,
that is modified at the commit time of only update transactions (hereafter we
name TL2’s original orec versions as write version, or orec.wv). As we will show
later, adding the read version is enough to detect simple scenarios where there is
no read-only transactions and there is only one transaction that allows RC-anti-
dependency at a time, like the example in Figure 1. We also define three shared

global metadata: anti dep lock, last ro, and last anti dep. Those metadata are
used to detect the more complicated scenarios, like the one in Figure 2, where
at least two concurrent transactions attempt to commit and they both allow
RC-anti-dependency, or one of them allows RC-anti-dependency and the other
is read-only. Note that last ro, and last anti dep, and the read versions of the
orecs should be monotonically increasing, which is not guaranteed if transactions
overwrite their values without checking the old values. Hereafter we use the term
monotonic update to refer to the correct action that considers this requirement.
The detailed pseudo code of this monotonic update is in Appendix A.

TL2-RCAD Commit Procedure. Now we show how we modify the commit
procedure of TL2 to allow RC-anti-dependency. We structured the pseudocode
in Algorithm 1 so that the difference between TL2 and TL2-RCAD, in addition
to the new metadata, lies only in the three functions at lines 33, 37, and 41. For
each function, we show how TL2 implements it, and how TL2-RCAD extends
that. The detailed pseudocode for both TL2 and TL2-RCAD is in Appendix A.

The first function is CheckAntiDep. TL2-RCAD allows RC-anti-dependency
at commit time by enriching TL2’s validation procedure. In TL2 each transaction
Ti iterates over all the orecs of its read-set and checks if the write version of each
orec is higher than the start timestamp of Ti, which is the condition for RC-anti-
dependency. At this point, TL2 conservatively aborts Ti, while TL2-RCAD tries
to commit Ti if allowing RC-anti-dependency does not result in executions that
violate strict serializability. To do so, the CheckAntiDep function in TL2-RCAD
is implemented as follows: it first acquires the anti dep lock to guarantee that no
other transaction will concurrently allow RC-anti-dependency. Then, it checks if
Ti’s start timestamp is less than: i) last ro, ii) last anti dep, and iii) both the
read versions and the write versions of all Ti’s write-set entries. Interestingly, all
those steps use only information saved in Ti’s read-set and do not require any
accurate knowledge about dependencies of other transactions.

The second function is UpdateVersions. In this function, TL2 only modi-
fies the write version of the write-set entries. In addition to that, TL2-RCAD
modifies the read version of the read-set entries. Also, if committing the trans-
action generates RC-anti-dependency (i.e., it calls CheckAntiDep), last anti dep
is monotonically updated to be the new value of the shared timestamp (after
being atomically incremented in line 36), then anti dep lock is released. The
third function is AntiDepHandle, which is an empty function in TL2. In TL2-
RCAD a read-only transaction Tr monotonically updates last ro to be the cur-
rent value of the shared timestamp. Then, it checks if anti dep lock is acquired
or last anti dep is greater than or equal to Tr’s start timestamp, which indicates
a concurrent transaction that allowed or is trying to allow RC-anti-dependency.
In that case, Tr conservatively aborts.

Considering Theorem 4, TL2-RCAD violates opacity because it makes read
operations visible only during the commit phase. However, as we prove in Theo-
rem 5 (proof is in Appendix B), TL2-RCAD guarantees strict serializability, and
this does not contradict the other impossibility results presented in Section 3,
because read operations and read-only transactions are visible in TL2-RCAD. In

fact, Theorem 5 proves that TL2-RCAD guarantees TMS1 [6], which is stronger
than strict serializability. Interestingly, to the best of our knowledge, TL2-RCAD
is the first TM implementation that has TMS1 guarantee.

Theorem 5. TL2-RCAD guarantees TMS1.

5 Evaluation

In this section, we evaluate TL2-RCAD, mainly to understand how allowing
RC-anti-dependency and weakening TMS2 affects performance. To do so, we
compare three variants of the TL2 algorithm: the TL2 implementation (TL2),
the TL2 implementation with the extension of the transaction start timestamp
(TL2-Extend), and TL2-RCAD. We evaluated the algorithms using the STAMP
benchmark suite [17]. The testbed consists of an AMD server equipped with 64
CPU-cores. Each datapoint is the average of 5 runs. We use two metrics during
the evaluation: throughput (in Figure 4) and the commit/abort ratio normalized
to the total number of executions of TL2 (in Figure 5). Due to space constraints,
we show the most significant plots here and we refer to Appendix for the others.

Our main observation is that aborts occur because of two main reasons other
than for RC-anti-dependency: finding an inconsistent state by a live transaction,
and failing in acquiring locks at commit time. That is why, the results in Figure 4
show only a marginal performance improvement in one application (kmeans), and
a performance similar to or worse than the other versions of TL2 in all other
applications. Roughly, the results split STAMP benchmarks into four categories
based on the level of contention and the size of transactions read-sets. This is
because contention level is an indicator of the potential gain of allowing RC-
anti-dependency; and the size of the read-set indicates the overhead of allowing
RC-anti-dependency in TL2-RCAD given the need of updating the read versions.

The first category includes ssca2 and labyrinth. In ssca2, transactions
are non-conflicting and have small read-sets, while in labyrinth transactions
have dominating non-transactional work. That is why in both scenarios allow-
ing RC-anti-dependency causes neither a degradation nor an improvement in
performance. Figures 4(a) confirms that by showing similar performance for all
competitors. The second category (vacation and genome) represents workloads
with non-conflicting transactions and large read-sets. In this case, the overhead
of allowing RC-anti-dependency increases due to large read-sets, but it does not
provide any benefit because most of the transactions already commit even using
the original TL2. That is why the performance of TL2-RCAD is constantly worse
than other competitors, as shown in Figure 4(b), which reflects the overhead of
allowing RC-anti-dependency. The third category is represented by intruder,
which is the worst case for TL2-RCAD. Performance degradation is higher than
all the other benchmarks, as shown in Figure 4(c). This is mainly because trans-
actions have large read-sets, which adds a significant overhead that increases
the overall commit time. Kmeans (Figure 4(d)) represents the forth category,
where transactions have small read-sets but they are more conflicting than the

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 0 10 20 30 40 50 60 70

TL2

TL2-Extend

TL2-RCAD

(a) Ssca2

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

(b) Vacation

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

(c) Intruder

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

(d) Kmeans

Fig. 4. Performance using STAMP. X-axis: number of threads; Y-axis: Time (s).

NonAD-Commits AD-Commits AD-Aborts Live-Aborts NonAD-Aborts

 0

 0.2

 0.4

 0.6

 0.8

 1

(i) (ii) (iii)

(a) Ssca2

 0

 0.2

 0.4

 0.6

 0.8

 1

(i) (ii) (iii)

(b) Vacation

 0

 0.2

 0.4

 0.6

 0.8

 1

(i) (ii) (iii)

(c) Intruder

 0

 0.2

 0.4

 0.6

 0.8

 1

(i) (ii) (iii)

(d) Kmeans

Fig. 5. Commit/abort ratios in STAMP. (i) TL2; (ii) TL2-Extended; (iii) TL2-RCAD.

previous applications. Due to the small read-sets, TL2-RCAD does not gener-
ally perform worse than its competitors. However, we also observe no gain from
allowing RC-anti-dependency, as detailed below.

Figure 5 shows, for each version of TL2, the percentage of committed read-
only and update transactions that never called CheckAntiDep (NonAD-Commits);
committed update transactions that called CheckAntiDep (AD-Commits); aborted
transactions that called either CheckAntiDep or AntiDepHandle (AD-Aborts);
aborted live transactions (Live-Aborts); and aborted update transactions due to
failing in locking an orec at commit (NonAD-Aborts). The sum of AD-Commits
and AD-Aborts represents all the potential executions for RC-anti-dependency,
while Live-Aborts and NonAD-Aborts represent the two reasons for aborting
transactions other than observing RC-anti-dependency. Unfortunately, although
we can save some Live-Aborts by spinning until the location is unlocked, which
is the case of both TL2-Extend and TL2-RCAD (line 13), spinning at commit
time in order to save some NonAD-Aborts can result in deadlock.

Figure 5 assesses that the overall percentage of potential RC-anti-dependency
is small, which clarifies the reason of limited performance improvement (or degra-
dation). More in details, Figures 5(a) and 5(b) confirm our analysis in ssca2 and
vacation by showing that NonAD-Commits is dominating. Labyrinth cannot
be interpreted due to its dominating non-transactional work. In intruder (Fig-
ure 5(c)), NonAD-Aborts of TL2-RCAD are higher than TL2-Extend. This is
a direct implication of holding locks for a longer time at commit time, due to
the longer validation process and the time spent in writing the read versions.
Finally, in kmeans (Figure 5(d)) the number of RC-anti-dependency observed
is very limited, which results in a slight performance improvement only for the
cases of 48/64 threads. Note that, although both TL2-Extend and TL2-RCAD

save most of live aborts in both kmeans and intruder, the impact of that in per-
formance is not reflected. This is mainly because preventing aborts in those cases
come with an additional cost of incrementally validating the whole read-set.

We also ran micro-benchmarks (shown in Appendix) seeking for a favor-
able configuration that allows RC-anti-dependency. Results confirmed a limited
performance improvement. As a summary, although we cannot claim that more
favorable workloads do not exist, our evaluation study assesses that, even with
a hand-tuned micro-benchmark, it is hard to find workloads where allowing RC-
anti-dependency in a single-version TM enhances performance noticeably.

6 Related Work

We classify the previous works that allow RC-anti-dependency into two cat-
egories: permissive algorithms, and multi-versioning algorithms. Interestingly,
both of them confirm our impossibility results by adopting techniques that make
both read-only transactions and the reads of update transactions visible.

Permissive algorithms need to track all dependencies in the system [9, 16],
and/or acquire locks for read operations [2], and both these techniques are known
to have a significant negative impact on performance. That is why, unlike TL2-
RCAD, all those solutions in this regard aimed at proving theoretical possibility
results rather than assessing practical implications.

Multi-versioning algorithms have a major benefit: allowing read-only transac-
tions to progress (usually non-blocking), and, generally, read operations to com-
plete without aborting the enclosing transaction. That is easy to achieve because,
thanks to the multi-versioned memory, transactions can always find a consistent
version to read. That is why even multi-versioning algorithms that do not allow
RC-anti-dependency, such as LSA [19] or JVSTM [7], have this positive effect.
We believe that the advantages of allowing RC-anti-dependency have a limited
gain compared to the potential gain of having non-blocking read-only transac-
tions. We justify this claim by briefly analyzing TWM [5], an algorithm that uses
multi-versioning and allows RC-anti-dependency. In the evaluation of TWM, all
the workloads that show a significant improvement have long and mostly read-
only transactions. Here TWM mainly benefits from the strong progress of read
operations. Those scenarios are not favorable for TL2-RCAD because, without
multi-versioning, it is hard to improve the progress of read operations, and also
those workloads add significant overhead due to their long read-sets.

Theoretically, our results are inspired by a research trend that aims at iden-
tifying the cost of accepting more histories in TM. For example, both online
permissiveness [16] and input-acceptance [8] introduce similar impossibility re-
sults on the visibility of read and write operations when the TM accepts some
sets of histories. Our results, however, are stronger since they are based on the
assumption that TM accepts only one history. Also, we selected that history as
it is the one used for identifying TMS2, which allows, for the first time, under-
standing the cost and limitations of relaxing TMS2 while still being safe.

7 Conclusion

In this paper we investigated the inherent costs and limitations of allowing RC-
anti-dependency in TM implementations. The major outcome of our findings is
that, the mandatory costs of allowing RC-anti-dependency (e.g., having visible
read operations) is not reflected in noticeable performance improvement.

Acknowledgements. This work is partially supported by Air Force Office of
Scientific Research (AFOSR) under grant FA9550-14-1-0187.

References

1. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: Safety of live Transactions in
Transactional Memory: TMS is necessary and sufficient. In: DISC. pp. 376–390
(2014)

2. Attiya, H., Hillel, E.: A single-version STM that is multi-versioned permissive.
Theory Comput. Syst. 51(4), 425–446 (2012)

3. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: PPOPP. pp. 67–78 (2010)

4. Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: DISC. pp. 194–208
(2006)

5. Diegues, N., Romano, P.: Time-warp: Lightweight abort minimization in transac-
tional memory. In: PPoPP. pp. 167–178 (2014)

6. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying Transactional Memory. Formal Aspects of Computing 25(5), 769–799
(2013)

7. Fernandes, S.M., Cachopo, J.P.: Lock-free and scalable multi-version software
transactional memory. In: PPOPP. pp. 179–188 (2011)

8. Gramoli, V., Harmanci, D., Felber, P.: On the Input Acceptance of Transactional
Memory. Parallel Processing Letters 20(1), 31–50 (2010)

9. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in Transactional mem-
ories. In: DISC. pp. 305–319 (2008)

10. Guerraoui, R., Kapalka, M.: On the correctness of Transactional Memory. In:
PPOPP. pp. 175–184 (2008)

11. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lec-
tures on Distributed Computing Theory, Morgan and Claypool (2011)

12. Hans, S., Hassan, A., Palmieri, R., Peluso, S., Ravindran, B.: Opac-
ity vs TMS2: Expectations and Reality. Tech. rep., Virginia Tech (2016),
http://www.ssrg.ece.vt.edu/papers/disc16-TR.pdf

13. Herlihy, M., Luchangco, V., Moir, M., III, W.N.S.: Software Transactional Memory
for dynamic-sized data structures. In: PODC. pp. 92–101 (2003)

14. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: ISCA. pp. 289–300 (1993)

15. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12(3), 463–
492 (1990)

16. Keidar, I., Perelman, D.: On Avoiding Spare Aborts in Transactional Memory. In:
SPAA. pp. 59–68 (2009)

17. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transac-
tional Applications for Multi-Processing. In: IISWC. pp. 35–46 (2008)

18. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26, 631–653 (October 1979)

19. Riegel, T., Felber, P., Fetzer, C.: A Lazy Snapshot Algorithm with Eager Valida-
tion. In: DISC. pp. 284–298 (2006)

A Detailed Pseudocode of TL2-RCAD

Algorithm 2 Detailed TL2-RCAD

1: procedure Start()
2: tx.start = global timestamp
3: end procedure

4: procedure Read(addr)
5: val = tx.write-set.find(addr)
6: if val != NULL then
7: return val
8: orec = getOrec(addr)
9: while true do
10: val = *addr
11: o = orec
12: if o.lock then
13: continue
14: if o.wv ≤ tx.start then
15: tx.readset.append(orec)
16: return val
17: new start = global timestamp
18: for each (orec) in tx.readset do
19: if orec.wv > tx.start then
20: Abort()

21: tx.start = new start
22: end procedure

23: procedure Write(addr, value)
24: tx.writeset.add(addr, value)
25: end procedure

26: procedure CommitRW()
27: LockAbortIfLockedNotByMe(tx.writeset)
28: for each (r orec) in tx.readset do
29: if LockedNotByMe(r orec) then
30: Abort()

31: for each (r orec) in tx.readset do
32: if r orec.wv > tx.start then
33: CheckAntiDep()
34: break
35: WriteBack(tx.writeset)
36: tx.end = AtomicInc(global timestamp)
37: UpdateVersions()
38: Unlock(tx.writeset)
39: end procedure

40: procedure CommitRO
41: AntiDepHandle()
42: end procedure

43: procedure CheckAntiDep
44: tx.anti dep flag = true
45: anti dep lock.acquire()
46: if last anti dep ≥ tx.start or last ro ≥

tx.start then
47: anti dep lock.release()
48: Abort()

49: for each (w orec) in tx.writeset do
50: if w orec.wv geq tx.start or w orec.rv

geq tx.start then
51: anti dep lock.release()
52: Abort()

53: end procedure

54: procedure UpdateVersions
55: for each (r orec) in tx.readset do
56: MonotonicUpdate(r orec.rv, tx.)

57: for each (w orec) in tx.writeset do
58: w orec.wv = tx.end
59: if tx.anti dep flag then
60: last anti dep = tx.end time
61: anti dep lock.release()

62: end procedure

63: procedure AntiDepHandle
64: MonotonicUpdate(last ro, global timestamp)
65: if anti dep lock.locked or last anti dep ≥

tx.start then
66: Abort()

67: end procedure
68: procedure MonotonicUpdate(var, new val)
69: repeat
70: cur val = var
71: if cur val ≥ new val then
72: break
73: until CAS(var, cur val, new val) = true
74: end procedure

B Proofs

B.1 Proof of Theorem 1

Proof. Let p1, p2 be two processes, and x and y be two distinct data items with
initial value equal to v0. Let us also consider the following execution intervals:
- α: p1 runs with no step contention from the initial configuration, it starts an

update transaction T1, and it executes the read operation T1.read(x).

- β: p2 runs with no step contention, it performs an update transaction T2, by
executing the read operation T2.read(y), the read operation T2.read(x), and
the write operation T2.write(x, v2), and then it commits T2.

- α′: p1 runs with no step contention, it executes the write operation T1.write(y, v1),
and it commits T1.

- β′: p2 runs with no step contention, it performs transaction T2, by executing
the read operation T2.read(x), the write operation T2.write(x, v2), and then it
commits T2.

We first prove that the executions E1 = α ·β and Eβ = β are valid executions
of T , and that T1.read(x), T2.read(x), and T2.read(y) return v0 as follows. α is
valid in E1 because transactions are minimal progressive, and, in α, T1 runs
without step contention from the initial quiescent configuration. For the same
reason, β is valid in Eβ because T2 runs without step contention from the initial
quiescent configuration. Also, since read operations of update transactions are
invisible, the executions E1 and Eβ are indistinguishable to process p2 by defi-
nition of invisible read operations, meaning that p2 has to take the same steps
both in E1 and Eβ . Therefore, β is valid in E1 as well. In addition, v0 is the
value of both x and y at the time α and the read operations of β are performed,
and therefore T1.read(x), T2.read(y), and T2.read(x) return v0.

At this point we prove that the valid execution E1 can be extended by ob-
taining an execution that must be accepted by T , although it violates strict
serializability. In particular, let us consider the executions E2 = α · β · α′ and
E3 = α · β′ · α′. First, we notice that E3 must be accepted by T , since T
has to accept RC-anti-dependencyhistories by hypothesis, and E3|H is RC-anti-
dependency. Then the prefix α · β′ of E3 is a valid execution of T , for the same
reason why E1 is a valid execution of T .

However, when p1 runs in E2 after α · β has been executed, it has to behave
like in E3, by executing α′. This is because T2 is an update transaction in β
and β′, and E2 and E3 are indistinguishable to p1 by definition of invisible
read operations. Therefore, E2 must be a valid execution that is accepted by T ,
although the history E2|H is not strict serializable. Indeed, in any possible legal
sequential history of T1, T2, we have that one of the following statements must
be true: i) T2.read(y) by T2 has to return v1; ii) T1.read(x) by T1 has to return
v2. This proves the theorem.

B.2 Proof of Theorem 2

Proof. Let p1, p2 and p3 be three processes, and x and y be two distinct data
items with initial value equal to v0. Let us also consider the following execution
intervals:

- α: p1 runs with no step contention from the initial configuration, it starts
transaction T1, and it executes the read operation T1.read(x) of T1.

- β: p2 runs with no step contention, it performs transaction T2, by executing
the read operation T2.read(x), the write operation T2.write(x, v2), and then it
commits T2.

- α′: p1 runs with no step contention, it executes the write operation T1.write(y, v1)
of T1, and it commits T1.

- γ: p3 runs with no step contention, and it executes and commits the read-only
transaction T3, with the read operation T3.read(x) and the read operation
T3.read(y).

We first prove that the executions E1 = α ·β and Eβ = β are valid executions
of T , and that T1.read(x) and T2.read(x) return v0 in E1 and E2 as follows. α
is valid in E1 because transactions are minimal progressive, and, in α, T1 runs
without step contention from the initial quiescent configuration. For the same
reason, β is valid in Eβ because T2 runs without step contention from the initial
quiescent configuration. Moreover, T1 is invisible in E1, since T1 is live in E1. If
so, the executions E1 and Eβ are indistinguishable to process p2 by the definition
of invisible read executions, meaning that p2 has to take the same steps both
in E1 and Eβ . Therefore, β is valid in E1 as well. In addition, v0 is the value
of x at the time α and T2.read(x) are performed, and therefore T1.read(x) and
T2.read(x) return v0.

Now we are going to extend the execution E1 with the execution interval γ,
and we are going to show that the resulting execution is valid. In particular,
let us consider the executions E2 = α · β · γ and E3 = β · γ. E3 is a valid
execution of T since both T2 and T3 (in β and γ, respectively) run without step
contention from a quiescent state, and they cannot abort according to minimal
progressiveness. Also, the execution E2 is a valid execution of T since E1 = α ·β
is valid, and the executions E2 = α ·β · γ and E3 = β · γ are indistinguishable to
process p3, due to the invisibility of transaction T1 (as it is in E1). Indeed, after
the execution interval α · β, p3 has to behave in E2 like it does in E3, since T1

is invisible.

It is also straightforward showing that, T3.read(x) has to return v0 in E2 and
E3, for the same reason why T1.read(x) returns v0 in E1. Also, since T3 follows T2

according to the real-time time that is induced by E2 and E3, and T guarantees
strict-serializability, then T3.read(y) has to return v2 in both E2 and E3.

At this point we prove that the valid execution E2 can be extended by ob-
taining an execution that must be accepted by T , although it violates strict
serializability. In particular, let us consider the executions E4 = α · β · γ ·α′ and
E5 = α · β · α′. First, we notice that E5 must be an execution of T , since T
has to accept RC-anti-dependencyhistories by hypothesis, and E5|H is RC-anti-
dependency. Then the prefix α · β · γ of E5 is a valid execution of T , since it
is equal to E2. However, when p1 runs in E4 after α · β · γ has been executed,
it has to behave like in E5, by executing α′. This is because T3 is a read-only
transaction in γ, and E4 and E5 are indistinguishable to p1. Therefore, E4 must
be a valid execution of T , although the history E4|H is not strict serializable.
Indeed, in any possible legal sequential history of T1, T2, and T3, which does
not violate the real-time order of T2 and T3, we have that one of the following
statements must be true: i) T3.read(y) by T3 has to return v1; ii) T1.read(x) by
T1 has to return v2. This proves the theorem.

B.3 Proof of Theorem 3

Proof. Let p1, p2 and p3 be three processes, and x and y be two distinct data
items with initial value equal to v0. Let us also consider the following execution
intervals:
- α: p1 runs with no step contention from the initial configuration, it starts

transaction T1, and it executes the read operation T1.read(x) of T1.
- β: p2 runs with no step contention, it performs transaction T2, by executing

the read operation T2.read(x), the write operation T2.write(x, v2), and then it
commits T2.

- α′: p1 runs with no step contention, it executes the write operation T1.write(y, v1)
of T1, and it commits T1.

- γ: p3 runs with no step contention, and it executes and commits the read-only
transaction T3, with the read operation T3.read(x) and the read operation
T3.read(y).

Let us also consider the executions E1 = α · β · γ · α′ and E2 = α · β · α′.
First, we notice that E2 must be an execution of T , since T has to accept

RC-anti-dependencyhistories by hypothesis, and E2|H is RC-anti-dependency.
Therefore the prefix α · β in both E1 and E2 is a valid execution of T . Fur-
thermore, the prefix α · β · γ of E1 is a valid execution of T , since read-only
transactions are obstruction-free, and T3 is a read-only transaction executing
with no step contention in γ.

About the return values of read operations, we notice that v0 is the value
of x at the time α and T2.read(x) are performed, and therefore T1.read(x) and
T2.read(x) return v0 in both E1 and E2. For the same reason, T3.read(x) has to
return v0 in E1. Also, since T3 follows T2 according to the real-time time that
is induced by E1, and T guarantees strict serializability, then T3.read(y) has to
return v2 in E1.

However, when p1 runs in E1 after α ·β ·γ has been executed, it has to behave
like in E2, by executing α′. This is because T3 is a read-only transaction in γ,
and E1 and E2 are indistinguishable to p1 due to the invisibility of read-only
transactions. Therefore, E1 must be a valid execution of T , although the history
E1|H is not strict serializable. Indeed, in any possible legal sequential history
of T1, T2, and T3, which does not violate the real-time order of T2 and T3, we
have that one of the following statements must be true: i) T3.read(y) by T3 has
to return v1; ii) T1.read(x) by T1 has to return v2. This proves the theorem.

B.4 Proof of Theorem 4

Proof. Let p1, p2 and p3 be three processes, and x and y be two distinct data
items with initial value equal to v0. Let us also consider the following execution
intervals:
- α: p1 runs with no step contention from the initial configuration, it starts

transaction T1, and it executes the read operation T1.read(x) of T1.
- β: p2 runs with no step contention, it performs transaction T2, by executing

the read operation T2.read(x), the write operation T2.write(x, v2), and then it
commits T2.

- α′: p1 runs with no step contention, it executes the write operation T1.write(y, v1)
of T1, and it commits T1.

- γ: p3 runs with no step contention, it starts a transaction T3, and it executes
two read operations T3.read(x) and T3.read(y).

We first prove that the executions E1 = α ·β and Eβ = β are valid executions
of T , and that T1.read(x) and T2.read(x) return v0 in E1 and E2 as follows.
α is valid in E1 because transactions are minimal progressive, and, in α, T1

runs without step contention from the initial quiescent configuration. For the
same reason, β is valid in Eβ because T2 runs without step contention from the
initial quiescent configuration. Furthermore, since T1 is live in α, and it does
not execute any write operation, it is invisible in E1 due to the invisible read
execution assumption.

Therefore, the executions E1 and Eβ are indistinguishable to process p2,
meaning that p2 has to take the same steps both in E1 and Eβ , and hence β is
valid in E1 as well. In addition, v0 is the value of x at the time α and T2.read(x)
are performed, and therefore T1.read(x) and T2.read(x) return v0.

Now we are going to extend the execution E1 with the execution interval γ,
and we are going to show that the resulting execution is valid. In particular,
let us consider the executions E2 = α · β · γ and E3 = β · γ. E3 is a valid
execution of T since both T2 and T3 (in β and γ, respectively) run without step
contention from a quiescent state, and they cannot abort according to minimal
progressiveness. Also, the execution E2 is a valid execution of T since E1 = α ·β
is valid, and the executions E2 = α ·β · γ and E3 = β · γ are indistinguishable to
process p3, due to the invisibility of transaction T1 (as it is in E1). Indeed, after
the execution interval α · β, p3 has to behave in E2 like it does in E3, since T1

is invisible.

It is also straightforward showing that, T3.read(x) has to return v0 in E2 and
E3, for the same reason why T1.read(x) returns v0 in E1. Also, since T3 follows T2

according to the real-time time that is induced by E2 and E3, and T guarantees
opacity, then T3.read(y) has to return v2 in both E2 and E3.

At this point we prove that the valid execution E2 can be extended by ob-
taining an execution that must be accepted by T , although it violates opacity.
In particular, let us consider the executions E4 = α ·β · γ ·α′ and E5 = α ·β ·α′.
First, we notice that E5 must be an execution of T , since T has to accept
RC-anti-dependency histories by hypothesis, and E5|H is RC-anti-dependency.
Then the prefix α · β · γ of E5 is a valid execution of T , since it is equal to E2.
However, when p1 runs in E4 after α · β · γ has been executed, it has to behave
like in E5, by executing α′. This is because T3 is live and it does not invoke any
write operation in γ, and hence it is invisible in E4. Therefore E4 and E5 are
indistinguishable to p1, and E4 must be a valid execution of T as well as E5 is

However the history E4|H violates opacity. Indeed, in any possible legal se-
quential history of T1, T2, and the completion T′3 of the live transaction T3,
which does not violate the real-time order of T2 and T′3, we have that one of
the following statements must be true: i) T′3.read(y) by T′3 has to return v1; ii)
T1.read(x) by T1 has to return v2. This proves the theorem.

B.5 Proof of Theorem 5

Proof. We prove that TL2-RCAD guarantees TMS1 in two steps. First, proving
that it is strict serializable. Second, proving that the response of each operation,
including those invoked by live or pending transactions, is justified by a legal
sequential history that: includes all transactions committed before it; excludes
all transactions aborted before it, as well as all live transactions; and either
includes or excludes any of the other concurrent transactions.

We first prove that H is strict serializable. Assume TTL2−RCAD is the set of
all histories generated by TL2-RCAD. Let H ∈ TTL2−RCAD be any arbitrary
history, and let E be an execution that generates H. We have three cases for
E: i) no transaction in E calls CheckAntiDependency and commits; ii) only one
transaction in E calls CheckAntiDependency and commits; or iii) more than one
transaction in E call CheckAntiDependency and commit. We will show that in
all the three cases, H is TMS1.

The first case is the simplest case. If no transaction calls CheckAntiDepen-
dency and commits, TL2-RCAD behaves as TL2-Extend, and thus H is also
accepted by TL2-Extend. Since TL2-Extend guarantees opacity, it is guaranteed
that H is opaque, and thus it is TMS1 (since opacity is stronger).

It is easy to show that the third case, where H has more than one transac-
tion that calls CheckAntiDep and commits, can be reduced to the second case,
where there is only one such transaction. This is because any two transactions
that call CheckAntidep and commit cannot be concurrent (because of the way
anti dep lock and last anti dep are checked and updated).

Regarding the second case, let us assume thatH has only one transaction that
calls CheckAntiDep and commits. We call this transaction TAD. This means that
we have one or more transactions that overwrite some reads of TAD and commit
before TAD. For simplicity, assume that there is only one such transaction, called
Towr. TAD has to be serialized before Towr because of the anti-dependency. We
show that we can find a serialization of all committed transactions where TAD
is serialized before Towr.

First, it is guaranteed that neither the reads nor the writes of Towr intersect
with the writes of TAD, because otherwise CheckAntiDep would fail and TAD
would abort. Also, since their write-sets do not intersect, the case where a write
by TAD overwrites a write on the same variable cannot happen, which also means
that the final values in the shared memory are always legal. This means that
both TAD and Towr comply with that serialization.

Now, Let Tcmd be any committed transaction inH other than TAD and Towr.
We have four possible cases for Tcmd:

- TAD ≺H Tcmd: This implies that Towr ≺H Tcmd, which means that Tcmd
would certainly observe all the writes of TAD and Towr.

- Tcmd ≺H TAD: In this case, Tcmd cannot be enforced to be serialized after
Towr. This is because i) it is impossible that Towr ≺H Tcmd because Towr
commits after TAD starts, ii) Towr does not publish any write before the
commit phase, which is after TAD begins, and thus Tcmd did not read any
value written by Towr.

- Tcmd is a read-only transaction concurrent with TAD: This case cannot hap-
pen because the way last ro and last anti dep are checked and updated
prevents two concurrent transactions from committing if one of them is read-
only and the other calls CheckAntiDep and commits.

- Tcmd is an update transaction concurrent with TAD: Tcmd cannot observe
a partial set of TAD’s or Towr’s writes, because of the two phase locking
approach used at commit. Thus, in order to forbid TAD from serializing be-
fore Towr, Tcmd should have read some value written by Towr and missed
some values written by TAD. We prove that this is impossible as follows.
Here, we have two cases. First, Tcmd commits before TAD. In this case, TAD
should have observed that there is a transaction that reads from its writes
during CheckAntiDep, and should have aborted in that case, which contra-
dicts our assumption that TAD commits. Second, Tcmd commits after TAD.
This means that Tcmd also observes anti-dependency and calls CheckAn-
tiDep, which contradicts our assumption that only one transaction accepts
anti-dependency and commits.

The next step is to prove that H is TMS1. Let Tlive be any live, pending, or
aborted transaction in H. We prove that the return value of each operation in
Tlive is justified by a legal sequential history. Here we have three cases for Tlive.

- Tlive ≺H TAD: This is impossible because we assume that TAD is already
committed.

- TAD ≺H Tlive: Like committed transactions, Tlive would have no issue in
serializing TAD before Towr in this case.

- Tlive is concurrent with TAD: Again, the only dangerous case is when Tlive
reads some value written by Towr and misses some value written by TAD.
However, this case does not violate TMS1 because Tlive and TAD are concur-
rent, so Tlive has the opportunity to exclude TAD from the legal serialization
that justifies the retunr values of its reads. It is worth to note that in this
case, Tlive will eventually abort (whether it is read-only or update transac-
tion) because of RC-anti-dependencyit observes, as we show above for Tcmd.
Such eventual abort preserves strict serializability in the whole system.

C Additional Evaluation Plots

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

TL2

TL2-Extend

TL2-RCAD

(a) Genome

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 10 20 30 40 50 60 70

TL2

TL2-Extend

TL2-RCAD

(b) Labyrinth

Fig. 6. Throughput in STAMP benchmarks. X-axis: number of threads; Y-axis: Time
(s).

 0

 0.2

 0.4

 0.6

 0.8

 1

(i) (ii) (iii)

(a) Genome

 0

 0.2

 0.4

 0.6

 0.8

 1

(i) (ii) (iii)

(b) Labyrinth

Fig. 7. Commit/abort ratios in STAMP. X-axis: (i) is TL2; (ii) is TL2-Extended; and
(iii) is TL2-RCAD.

