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Abstract—We consider distributed transactional memory
(DTM) for concurrency control in distributed real-time programs,
and present an algorithm called RT-TFA. RT-TFA transparently
handles object relocation and versioning using an asynchronous
clock-based validation technique, and resolves transactional con-
tention using task time constraints. We implement the RT-TFA on
top of JChronOS, a layer extending the scheduling capabilities of
ChronOS for Java programs. We conduct an extensive evaluation
study comparing RT-TFA with well known competitors for real-
time distributed applications. Our results reveal that RT-TFA
outperforms competitors in mostly scenarios up to 43% with
added advantage of better programmability and composability.

I. INTRODUCTION

Distributed embedded software is inherently concurrent, as
they monitor and control concurrent physical processes. Often,
their computations need to concurrently access (i.e., read,
write) shared data objects, which must be properly coordinated
so that consistency properties (e.g., linearizability [1], serial-
izability [2]) can be ensured. Furthermore, they must satisfy
application time constraints. The usual way for managing
concurrency of different processes in a system is using locks,
which inherently suffers from programmability, scalability, and
composability challenges [3]. Additionally, the implementation
of complex algorithms based on mutual exclusion becomes
hard to debug, resulting in higher developing time.

Software transactional memory (STM) [4] is an novel
synchronization abstraction that promises to alleviate these
difficulties. In fact, leveraging the proven concept of atomic
and isolated transactions, STM spares programmers from the
pitfalls of conventional lock-based synchronization, signifi-
cantly simplifying the development of parallel and concurrent
applications. With STM, in-memory operations are organized
as memory transactions that read/write shared objects. These
transactions optimistically execute, logging object changes in
a private space. Two transactions conflict if they access the
same object and one access is a write. When that happens,
a contention manager resolves the conflict by aborting one
and committing the other, yielding (the illusion of) atomicity.
Aborted transactions are rolled-back and re-started.

The challenges of lock-based concurrency control are exac-
erbated in distributed systems, due to the additional complexity
of multi-computer concurrency (e.g., distributed deadlocks,
priority inversion, and composability challenges). Distributed
TM (or DTM) [5]–[7] has been similarly motivated as an
alternative to distributed locks. DTM can be supported in
any distributed execution model, with concomitant tradeoffs,
including a) control flow [8], where objects are immobile and
transactions invoke object operations through RMIs/RPCs and

b) dataflow [9], where transactions are immobile, and objects
are migrated to invoking transactions.

Given DTM’s programmability, scalability, and compos-
ability advantages, it is also a compelling abstraction for
distributed embedded real-time programs. In fact, developing
distributed concurrent applications with time constraints is
several order of magnitude harder than conventional, non real-
time, distributed applications. DTM is the potential solution,
however, in order to cope with time constraints, it requires
bounding (distributed) transactional retries, as (distributed)
real-time tasks, which subsume transactions must satisfy dead-
lines. Bounding transactional retries requires resolving trans-
actional contention using time constraints.

Motivated by these needs, in this paper we present RT-
TFA, Real-Time Transaction Forwarding Algorithm. RT-TFA
extends the distributed concurrency control scheme called
TFA [10], used in recent works such as [11]–[13], with real-
time contention management. RT-TFA has been implemented
on top of ChronOS [14]. It enables a thread to execute part of
it under real-time constraints in comparison to other existing
real-time OS (e.g. Integrity, µItron etc.) where whole thread
is executed under real-time constraint. In order to allow JAVA
applications to define time constraints and inject into ChronOS,
we designed and implemented JChronOS, a user-space library
which provides the hooks to interface with the ChronOS kernel
from Java application.

We assess the performance of RT-TFA by an extensive
evaluation study, comparing our approach with the widely used
protocols for implementing real-time distributed applications.
Our results show that RT-TFA outperforms competitors in
mostly scenarios up to 43%. To the best of our knowledge,
RT-TFA is the first algorithm that enables DTM concurrency
control in real-time programs.

II. PRELIMINARIES AND ASSUMPTIONS

We consider a distributed system of N nodes, where
each node has one or more processing cores. We consider a
programming model similar to Real-Time CORBA [15]: a dis-
tributed task (or simply called task, hereafter) is programmed
as a thread that may read/write local as well as remote objects.
Unlike CORBA, which is based on control flow execution, we
consider Herlihy and Sun’s dataflow execution model [16],
where threads are immobile and objects are (transparently)
migrated to invoking threads using a directory-based lookup
protocol (e.g., [16]). A time constraint on a task is expressed
using a scheduling segment (like in CORBA), which is a task
code segment subject to the time constraint.



We assume n 6= N sporadic tasks τ1, τ2, · · · , τn, with a
minimum period of t(τi). A task τi’s mth instance is denoted
τmi , and has a relative deadline D(τmi ) = t(τi). Since we focus
on real-time (distributed) tasks, for the rest of the paper, we
restrict our attention to code inside task scheduling segments.
Each task’s scheduling segment may contain non-atomic as
well as atomic code sections. The worst case execution time
(WCET) ci of a task τi is the sum of its worst case execution
time of non-atomic sections (Ci) and atomic sections (si).

Each object θ, can be accessed by multiple atomic sections
(and therefore multiple tasks). An atomic section may involve
reading/writing (one or more) local/remote shared objects. An
atomic section’s length is the sum of the execution costs of: 1)
acquisition of objects from remote node, 2) local modifications
on object, 3) acquisition of locks from remote node, and 4)
communication cost for remote requests ρ. If one or more
atomic sections conflict, it is resolved by committing one
section and aborting/retrying the others, which increases the
time to commit the aborted ones. The retry cost RC(τi) is the
total time that a task τi executes its aborted atomic sections.
Response time of τi i.e. R(τi), is sum of τi’s WCET (ci), retry
cost RC(τi), and the interference caused by other tasks to τi.

We assume a network with bounded communication delay
(e.g., [17]), denoted ρmax. Node clocks are synchronized
(e.g., [18]), and clock drift is bounded by δmax. Each task is
assumed to have a programmer-supplied exception handler. We
consider a termination model [19] for task failures including
those due to time-constraint violations. If a task has missed its
deadline, the handler is immediately executed on all nodes
where the task may be accessing objects. The handler is
assumed to perform the necessary recovery actions.

III. OVERVIEW OF TFA

For completeness, we overview TFA. TFA [20] builds
on the TL2 algorithm proposed for multiprocessor TM [21].
It is a data flow based, distributed transaction management
algorithm, which provides atomicity, consistency, and isolation
properties. Under TFA, operations on distributed objects are
buffered and locks on objects are acquired at commit time. On
successful acquisition of locks, objects are updated. Otherwise,
the transaction is aborted by releasing all previously acquired
locks and retried.

In contrast to TL2’s central clock, TFA uses independent,
per-node transactional clocks and provides a mechanism to
establish the “happens before” relationship between significant
events (e.g., write-after-write, read-after-write). Upon a trans-
action’s successful commit, a node increments its local clock.
An object’s version is defined by the local clock at the time of
the object’s last modification. When a local object is accessed
by a transaction, as part of validation, the object version is
compared with the transaction’s starting time. If the object’s
version is newer, the transaction is aborted and retried.

For validating remote objects, TFA employs a technique
called “transaction forwarding:” when a transaction requests
access to a remote object, the local clock is piggybacked with
the request to the remote node. The remote node advances its
clock to the sender’s clock if its clock is older; otherwise,
no update is made to the remote clock. The remote node
then sends the object copy with its clock value. Upon receipt,
the local node (i.e., the sender) compares the remote clock

value with the transaction starting time. If the remote clock
is newer, the transaction’s read-set is validated by checking
whether any other object in the read-set has been updated
to a version newer than the transaction starting time. If the
read-set validation succeeds, then the transaction starting time
is advanced to the remote clock value (i.e., “forwarded”).
Otherwise, the transaction is aborted and re-issued.

When a transaction reaches the commit stage, it first
acquires locks on all the objects in its write-set. On successful
lock acquisition, the objects are updated and the transaction
committing node is published as the new host of the updated
objects. If lock acquisition fails for any object, all acquired
locks are released, and the transaction is aborted and re-issued.

Illustrative Example. Consider three nodes, N1, N2, and
N3, each running transactions T1, T2, and T3, respectively
(see Figure 1). N2 hosts object θ and is considered θ’s
“owner.” Nodes maintain a local transactional clock, which
is incremented when transactions running on them commit.
T3 starts at local clock lc3 = 12 and requests θ from N2 at
lc3 = 16. N2 compares the received clock value with its local
clock lc2 = 12 and advances its clock to lc2 = 16. After
some time, T1 starts at local clock lc1 = 14 and requests θ
from N2 at lc1 = 19. At N2, no change is made to its local
clock lc2, since rc = 19 < lc2 = 21. When N1 receives
the response from N2, it observes that lc1 = 19 < rc = 21.
Therefore, it forwards T1 to start at lc1 = 21 and validates
all other objects accessed earlier by T1. Later, T3 acquires the
lock on θ at N2 and updates θ at local clock lc3 = 25. Now,
N3 holds the ownership of θ, but leaves θ locked at N2. When
T1 tries to acquire the lock on θ, it may find N2 or N3 as the
object owner depending on when N3 successfully publishes
its ownership of θ. If T1 requests the lock on θ from N2, it
fails due to the existing lock on θ and aborts. Otherwise, if
T1 finds N3 as the owner, it acquires the lock, but fails during
read-set validation. Therefore, T1 releases the lock acquired
on θ at N3 and aborts. T1 retries and requests θ again from
the new owner N3. Concurrently, another transaction T2 also
receives θ, but T1 acquires the lock on θ earlier than T2 and
commits. As a result, T2 aborts and retries. T2 finally commits
at lc2 = 44 and becomes the new object owner.

IV. RT-TFA

Overview. Since TFA is agnostic to task time constraints,
it can cause priority inversions, causing higher priority tasks
to miss their time constraints. For example, in Figure 1, if the
deadlines d1, d2, and d3, of the parent tasks of transactions
T1, T2, and T3, respectively, are such that d1 > d2 > d3, then
it is possible that transactions will commit in a different order
than their respective deadlines. From Figure 1, even though
T2’s urgency is greater than T1’s, T1 commits earlier than T2.
Therefore, T2 may not be able to meet its deadline, though
there might be enough slack time for T1 to commit later.

RT-TFA extends TFA to support transactions that execute
under time constraints. Under RT-TFA, task scheduling seg-
ments are scheduled at each node using EDF. Transactions
inherit the deadlines of their parent tasks: when atomic sections
attempt to access and modify local or remote shared objects,
they may be subject to object access conflicts. Those conflicts
are resolved using the deadlines of the sections’ parent tasks.

RT-TFA inherits all properties of TFA: objects are acquired
at encounter time, transaction clock values are exchanged, and
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Fig. 1. Example transaction execution under TFA.

transaction forwarding is conducted. However, in addition to
the local clock, the object requester also sends the deadline
of the transaction (when the object is remote). The object
holder maintains a list of all the requesters for the shared
object in a deadline-ordered queue, and grants the object to the
earliest deadline transaction. If an earlier deadline transaction
Ta requests an object θ which was previously granted to a later
deadline transaction Tb, then Tb is aborted and θ is granted to
Ta. Tb joins the deadline-ordered wait queue for θ. When Ta
commits, it signals Tb to retry.

After acquiring the object, a transaction moves forward to
acquire the remaining objects or to make changes on locally
buffered objects. Shared objects are updated after the transac-
tion acquires locks on the objects. A committing transaction
signals the next transaction in the (deadline-ordered) wait
queue to resume, which then retries the object acquisition from
the new object owner. In this way, transactions commit in their
deadline order.

Illustrative Example. Nodes N1, N2, and N3, which are
clock-synchronized, run tasks τ1, τ2, and τ3, respectively. The
absolute deadlines of these tasks are in time order of d1 >
d2 > d3. N3 hosts an object θ, and is its owner.

τ1 starts executing on N1 and contains a transaction T1.
T1 starts a read or write operation on θ, as shown in Figure 2.
T1 sends the request to access θ to N3, and piggybacks its
transaction clock and absolute deadline (lc1, d1) with the
request. When N3 receives this request, it replies back with its
remote clock (rc3) and adds this entry to its object ID/deadline
list map < ID(θ), list(d(τi)) >. Little later τ2 at N2 initiates
transaction T2 on θ and sends request for θ to N3. On receiving
this request, N3 finds a later deadline transaction T1 accessing
θ. N3 replies to N2 with rc3 and sends a request to N1 to abort
T1. On receiving this request at N1, T1 is aborted and τ1 is
suspended. Later when T2 commits on θ, it sends a request to
resume τ1, thereby T1 retries and requests access to θ from the
new host N2. Meanwhile τ3 at N3 starts T3 on θ and sends
request for θ to N2. N2 replies with its clock (rc2) and adds
this entry to its object ID/deadline list map. Later when N2

receives a request from T1, it declines the request since T1
has a later deadline than T3. On receiving the response, T1
is aborted and τ1 is again suspended. When T3 commits, τ1
resumes. Finally T1 receives θ from N2 and commits.

Transactions are committed in deadline order T1 � T2 and
T1 � T3, only if there is contention for a shared object. On

other hand, a later deadline task may start early depending
on its arrival pattern and commit on an object, before another
earlier deadline task may attempt to access this object (e.g.,
T2 commits earlier than T3).

V. ARCHITECTURE

The nodal architecture of RT-TFA’s implementation con-
sists of a stack of the ChronOS Linux kernel, JChronOS,
the JVM, RT-TFA and the application. In the following we
describe the core modules of this architecture.

ChronOS. ChronOS [14] is derived from the
2.6.33.9 version of the Linux kernel. It uses the
CONFIG PREEMPT RT real-time patch [22] which
enables complete preemption in the Linux kernel and
improves interrupt latencies. ChronOS provides a set of
APIs and a scheduler plugin infrastructure that can be used
to implement and evaluate a variety of single- and multi-
processor scheduling algorithms. The ChronOS real-time
scheduler is implemented as an extension to the Linux
O(1) scheduler. ChronOS includes implementations of
various single-processor (e.g., EDF, DASA, RMA etc.) and
multiprocessor scheduling algorithms (e.g., G-EDF, NG-GUA,
G-GUA etc.). Single-processor schedulers in ChronOS support
priority inheritance to address priority inversion.

In ChronOS, a time constraint on a thread is expressed
using the notion of a scheduling segment (introduced in
Section II). A real-time application in ChronOS specifies the
start and end of a scheduling segment. Scheduling segments
of a task are identified using special APIs, and are scheduling
events. A scheduling event is defined as a trigger that forces
the system into a scheduling cycle, resulting in a call to
the scheduler where new task(s) are selected based on the
scheduling algorithm. In ChronOS, we define four scheduling
events (e.g., beginning of a scheduling segment, end of a
scheduling segment, resource request, and resource release).

Under different load conditions, real-time segments may
violate their time constraints. Until they finish their execution,
such segments may block the execution of other real-time
segments. ChronOS supports a thread abort mechanism by
which the application is notified about the threads with expired
time constraints. On receiving this information, the application
can run the abort handler for the threads, thereby terminating
expired real-time segments. RT-TFA uses this mechanism to
abort transactions when they violate their thread deadline.
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Fig. 2. Example distributed real-time transaction execution under RT-TFA.

JChronOS. In this section we present JChronOS, a library
that extends the scheduling capabilities of ChronOS for Java
programs. This is accomplished by accessing the existing
ChronOS library, libchronos, through JNI. libchronos
is written in C and interacts with the ChronOS scheduler
through system calls to initialize the real-time scheduler, begin
or end a real time segment, acquire a ChronOS mutex, etc.

JChronOS consists of two components. The first com-
ponent, written in Java, provides the necessary interfaces to
applications in Java. It enables Java applications to define
scheduling segments and to acquire resources by simply im-
porting the classes provided by its interface. These classes are
distributed in a jar file, libjchronos.jar. When invoked,
these methods call the other component of JChronOS, the
native library, through JNI. The second component, main-
tained in Linux by the shared object libjchronos.so,
provides a mechanism for converting data structures between
their Java forms, and those required by libchronos, the
existing ChronOS library, and its system calls. Once it has
converted any arguments appropriately, libjchronos.so
calls libchronos.so, marshals the data into Java objects,
and returns from the JNI call.

VI. IMPLEMENTATION AND EVALUATION

Implementation. We implemented RT-TFA in the HyFlow
Java DTM framework [23], which provides pluggable support
for policies for directory lookup, transactional synchronization
and recovery, and contention management. We integrated this
implementation with the ChronOS real-time Linux kernel. We
modified HyFlow to transparently support distributed real-
time transactions: atomic sections defined within scheduling
segments transparently use thread time constraints for local
and remote contention management.

Experimental setting. We used a 14-nodes testbed, where
each node is an AMD Opteron 1.9GHz processor. The average
network delay is less than 1ms. Each node ran a set of periodic
tasks. Each task is composed of a fixed duration for processing
non-atomic section and atomic sections. In the experiments,
5 tasks were fired at each node, resulting in 70 concurrent
tasks over 50 Bank objects. Tasks were defined such that, they
contained atomic sections with local and remote read/write
operations, resulting in time-critical, distributed transactions.
Table I shows the task details.

We used a well known benchmark for STM and DTM
called Bank, a monetary application. This maintains a set
of accounts distributed over bank branches, and contains
two transactions: A) a read operation i.e. transfer, which

TABLE I. TASK PROPERTIES

Task T1 T2 T3 T4 T5

Period (ms) 500 1000 1500 3000 5000
Number of transfer 1 1 1 1 1
Bank objects accessed 2 2 2 2 2

transfers a given amount between two accounts, and B) a write
operation i.e. total balance , which computes the total
balance for given accounts. The object size and the number of
operations per object during a transaction is configurable.

We considered three competitors for RT-FTA, all of them
using Java RMI and a version of the classic two-phase-
locking protocol (2PL) [24]. Our first competitor (2PL)
uses mutual exclusion locks to guard critical sections. The
second implementation (2PLRW ) uses readers-writer locks.
The last version (2PLPI ) uses mutual exclusion locks with
distributed priority inheritance i.e., the (dynamic) priorities of
transactions are propagated [25] with transactions to resolve
contention on remote shared objects. The main competitor in
our comparison is 2PLPI , which is widely used in distributed
real-time systems for lock-based synchronization. Though it
does not provide guarantee against deadlock, it reduces priority
inversions by inheriting the priority of highest blocked task.
Other competitors further highlight the blocking duration ex-
perienced by distributed tasks. We do not consider Distributed
Priority Ceiling [26], because it requires prior information
about the object access pattern, while in our application we
do not impose such limitation.

Results. Figures 3(a) and 3(b) show the deadline satisfac-
tion ratio (DSR) and the throughput, respectively, of RT-TFA
and the three 2PL versions for different percentages of read
operations. All other parameters are fixed: 1 transaction per
task, 14 nodes, and 50 Bank objects. DSR is the fraction
of the total number of tasks that met their deadlines and
throughput is the total number of successfully committed
transactions/second.

RT-TFA yields comparable DSR to 2PL with priority
inheritance (2PLPI ) and higher DSR than other versions
of 2PL. RT-TFA underachieves against 2PLPI for lower
percentages (e.g., <∼35%) of read operations due to the higher
retry cost for aborted transactions. As percentage of read
operations increase, RT-TFA outperforms all three versions of
2PL, which is directly due to optimistic concurrency control:
RT-TFA does lazy locking and acquires locks at the commit
stage. In contrast, 2PL serializes objects by acquiring the locks
before entering the critical section and therefore suffers from
higher cost of priority inversion.
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Fig. 3. DSR and throughput (0-100% read operations).

Next, we evaluated RT-TFA for different contention levels
resulting from varying the number of objects with a fixed
number of nodes and transactions. DSR and Throughput plots
are omitted due to space constraints, but we describe our
observations. RT-TFA’s DSR improves gradually; this is due
to reduced contention from increased number of objects due to
which RT-TFA incurs less cost of transaction aborts and retries.
RT-TFA outperforms all competitors except 2PLPI for lower
percentage (less than 35%) of read operations, where it suffers
from higher number of aborted and retried transactions.

VII. CONCLUSIONS

We presented the RT-TFA algorithm for supporting DTM
in distributed real-time programs. The algorithm inherits TFA’s
core mechanisms for transactional synchronization, and ex-
tends it with real-time contention management. We built RT-
TFA on a distributed, real-time OS-based infrastructure, called
ChronOS and provided JChronOS, a layer enabling the direct
interactions between RT-TFA and ChronOS. We implemented
RT-TFA in the HyFlow DTM and compared with different
protocols usually adopted for developing distributed real-time
applications. Our results revealed that RT-TFA yields compa-
rable deadline satisfactions to 2PLPI and outperforms other
2PL-based locking protocols (by as much as 43%). Finally,
by the results we can state that DTM can be supported in
distributed real-time programs, allowing programmers to reap
DTM’s better programmability and composability properties.
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