
Integrating Transactionally Boosted Data
Structures with STM Frameworks:

A Case Study on Set

Ahmed Hassan, Roberto Palmieri, Binoy Ravindran
Virginia Tech

TRANSACT 2014

State of art

q  Concurrent data structures are well optimized for high
performance
q  E.g., Lazy linked-list, Lazy skip-list

What about Transactional data structures?

What about Transactional data structures?

q  Software Transactional Memory (STM)?
q  Yes, but will lose performance

q  Why?
q  For STM to be a general framework, data structures

will suffer from false conflicts

False Conflict

q  Example: Linked list (Insert “55”)

10 5 2 70 60 50

55

X

False Conflict

q  Example: Linked list (Insert “55”)

q  All “red” nodes are in the read-set
q  “50” and “55” are in the write-set
q  What if a concurrent transaction deletes “5”??

False Conflict

10 5 2 70 60 50

55

Solution for transactional data structures

q  Solution: Transactional Boosting [Herlihy PPoPP08]

q  Convert highly concurrent data structures to
transactional ones

q  Other trials:
q  Early release, Elastic transactions, …
q …but programmability is hampered

Motivation by examples

q  Good:
q  Easy to program
q  Strong correctness and progress guarantees

Shared data: n1, n2

@Atomic

foo()
{

 n1++;
 n2++;

}

q  Example of pure memory accesses to shared objects:

Motivation by examples

q  Good:
q  Transactional support
q  Optimized for:

Ø ensuring high performance
Ø minimum false conflicts

Shared data: boostedSet

foo(x)

{
boostedSet.add(x);

}

q  Example of pure memory accesses to shared data
structure:

Motivation by examples

Without an integrated support for allowing the coexistence of
memory accesses and data structure accesses, boostedSet
has to be a pure-STM set

Shared data: boostedSet, n1, n2

@Atomic

foo()
{

 if(boostedSet.add(x))
 n1++;
 else

 n2++;

}

Having pure memory accesses and data structure
accesses merged in the same transaction

What we propose

q  An integrated framework enabling:
q  Application programmers to exploit in the same

transaction both STM accesses, as well as data
structure accesses, without paying the cost of
monitoring in the STM all memory accesses due to
data structure operations (thus solving the problem of
false conflicts)

q  Protocol designers to leverage the proposed software
architecture for embedding new optimized data
structures and STM protocols, in a way they can
coexist in the same transaction

Design Choices

q  As a guideline for implementing optimized transactional
data structure, we adopt:
q  Optimistic Transactional Boosting (OTB) [PPoPP14]

q  Why OTB?
q  OTB is an optimistic methodology for converting

concurrent data structures into transactional, and it is
designed to support integration with STM

q  OTB uses the concepts of Validation, Commit, and
Abort in the same way as several (optimistic) STM
algorithms

q  OTB allows data structure-specific optimizations

Lazy Vs Boosting Vs Optimistic Boosting

q  Comparison among:
q  Concurrent Lazy data structures
q  Transactional data structures based on Original

Boosting
q  Optimistic Transaction Boosting

Design Choices

q  As a basic framework for the integration, we use DEUCE

q  Why DEUCE?
q  It is a Java STM framework with a simple interface
q  It already provides several STM algorithms

Our goals

q  The design of our integrated solution has three main
goals:
q  Keeping the simple programming interface of DEUCE
q  Allowing the integration between OTB data

structures’ operations and memory reads/writes
q  Giving developers a simple API to plug-in their own

OTB data structures and/or OTB-STM algorithms

Framework Design

q  The original DEUCE Framework:

@Atomic , @Exclude Application

DEUCE Runtime

STM Algorithms

instrumented foo foo

STM Context

Framework Design

q  Our Additional Building Blocks:

Application

DEUCE Runtime

STM Algorithms

OTB Delegator

OTB Data Structures

OTB-STM Context

Transactional Data
Structures

STM Context

Our case study

q  In this paper we provide the integration of:
q  OTB Set, with
q  TL2, and
q  NOrec

q  Other OTB data structures are presented in the
technical report: ”Optimistic Transactional
Boosting”, available at http://www.hyflow.org/pubs/
ppopp_14_TR.pdf

OTB Set

q  Design:
q  Semantic read-set: pred, curr, operation
q  Semantic write-set: pred, curr, operation, newValue

q  Correctness:
q  Lazy (linearization): pred and curr are not deleted,

and pred points to curr
q  STM (serialization): post-operation validation and

commit validation
q  Integration:

q  First Operation: attachSet
q  Validation: validate-data, validate-data&locks
q  Commit: preCommit, onCommit, postCommit

Integration with NOrec

q  Integration with NOrec is simple:
q  both OTB set and NOrec validate the read-set after

each operation and perform a value-based validation
at commit

q  NOrec uses a coarse-grain lock, thus acquiring fine-
grain semantic locks is not needed

q  Validation:
q  onReadAccess: call OTB set’s validate-data
q  onOperationValidate: call NOrec’s validation

q  Commit:
q  Do not call set’s preCommit and postCommit during

transaction commit
q  Do not call set’s onAbort during transaction abort

Integration with TL2

q  Integration with TL2 requires the acquisition of fine-grain
semantic locks

q  Validation for OTB set is not value-based thus semantic
locks are implemented as sequence locks.

q  Validation
q  onReadAccess: call OTB set’s validate-data&locks
q  onOperationValidate: Do nothing with TL2

q  Commit:
q  Call set’s preCommit and postCommit during

transaction commit
q  Call set’s onAbort during transaction abort

Generalization

q  All the differences between the integration of NOrec and
TL2 are due to optimizations

q  We can generalize validation and commit for any STM
algorithm (losing STM-specific optimizations, e.g.
validate-data without checking locks)

q  Further investigation on the generalization is considered
as future work

Performance Evaluation

q  48-core AMD Opteron machine
q  1400 MHz, 32 GB of memory, and 16KB L1 data cache.
q  Average of 5 runs
q  Warm-up phase of 2 seconds
q  Execution phase of 5 seconds

Performance Evaluation

q  Micro-Benchmarks – without pure memory reads/writes

Linked List - 512 nodes - 50% reads

Skip List - 4K nodes - 50% reads

Performance Evaluation

q  Micro-Benchmarks – with pure memory reads/writes

Linked List - 512 nodes - 50% reads

Skip List - 4K nodes - 50% reads

Thanks!

Questions?

