
Scheduling Open-Nested Transactions in
Distributed Transactional Memory

Junwhan Kim, Roberto Palmieri, and Binoy Ravindran

Virginia Tech
USA

{junwhan,robertop,binoy}@vt.edu	

COORDINATION 2013

	

	

	

	

	

	

	

	

	

Transactional memory

q  Like database transactions
q  ACI properties (no D)
q  Easier to program
q  Composable

q  First HTM, then STM, later HyTM

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for
lock-free data structures. ISCA. pp. 289–300.
N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213.

	

	

	

	

	

	

	

	

	

Three key mechanisms needed to create
atomicity illusion

atomic{!
 x = x + y;!
} !

Versioning

Where to store new x until
commit?
q  Eager: store new x in

memory; old in undo log
q  Lazy: store new x in write

buffer

atomic{!
 x = x + y;!
} !

atomic{!
 x = x / 25;!
} !

T0 ! T1 !

Conflict detection

How to detect conflicts between
T0 and T1?
q  Record memory locations read in

read set
q  Record memory locations wrote in

write set
q  Conflict if one’s read or write set

intersects the other’s write set

	

	

	

	

	

	

	

	

	

Third mechanism is contention management

 !
 x = x + y;!
 !

 !
 x = x / 25;!
 !

T0 ! T1 !

 !
 x = x / 25;!
 !

Which transaction to abort?
q  Greedy: favor those with an earlier start time
q  Karma: ….

	

	

	

	

	

	

	

	

	

Transactional scheduler is not necessary,
but can boost performance

q  Contention manager
q  Can cause too many aborts, e.g., when a long running

transaction conflicts with shorter transactions
q  An aborted transaction may wait too long

q  Transactional scheduler’s goal: minimize conflicts (e.g., avoid
repeated aborts)

Walther M. et al. (2010). Scheduling support for transactional memory
contention management, PPoPP, pp 79 - 90

	

	

	

	

	

	

	

	

	

Distributed TM (or DTM)

q  Extends TM to distributed systems
q  Nodes interconnected using message passing links

q  Execution and network models
q  Execution models

Ø Data flow DTM (DISC 05)
p  Transactions are immobile
p  Objects migrate to invoking transactions

Ø Control flow DTM (USENIX 12)
p  Objects are immobile
p  Transactions move from node to node

q  Herlihy’s metric-space network model (DISC 05)
Ø Communication delay between every pair of nodes
Ø Delay depends upon node-to-node distance

1st hop 2nd hop 3rd hop 4th hop 5th hop
Distance

1.499 ms 9.095 ms 16.613 ms 13.709 ms 15.016 ms

	

	

	

	

	

	

	

	

	

Nested Transactions

q  A transaction is nested
q  When it is enclosed within another transaction

q  Motivations
q  Make code composability easy
q  Potential for improved performance
q  Fault management

q  Three types of nesting models
q  Flat, Closed, Open

J. E. Moss (1981). Nested transactions: an
approach to reliable distributed computing.

1 tx_begin
2 x++;
3 y++;
4 tx_begin
5 i++;
6 tx_end
8 tx_end

T1

T1-1

Example of a nested transaction

	

	

	

	

	

	

	

	

	

Flat Nested Transactions

T1

T2 may proceed after T1 commits

Flat inner transactions accessing a shared object

T2 commit

T1 successfully commits

T2 must abort while T1 is still executing

	

	

	

	

	

	

	

	

	

Closed Nested Transactions

T1

Closed inner transactions accessing a shared object

T2 commit

T2's inner transaction may proceed after T1 commits

T1 successfully commits

T2's inner transaction must abort
while T1 is still executing

A. Turcu and B. Ravindran (2012). On Closed Nesting in
Distributed Transactional Memory, TRANSACT, pp 1- 10

	

	

	

	

	

	

	

	

	

Open Nested Transactions

T1

Open inner transactions accessing a shared object

T2

T2's inner transaction only has to abort
while T1's inner transaction is executing

T2's inner transaction may proceed as
soon as T1's inner transaction commits

T1's inner transaction commits and releases its isolation

T1 successfully commits

T2 successfully commits

A. Turcu and B. Ravindran (2012). On Open Nesting in
Distributed Transactional Memory, SYSTOR, pp 1- 12

	

	

	

	

	

	

	

	

	

Abstract serializability, abstract locks, and
correctness of open nesting

q  Multi-level serializability
q  Abstract-level

Ø T1 and T2 can execute and commit concurrently iff x ≠ y ≠ z
q  Physical-level

Ø T1 and T2 conflicts because
both access same physical
structure where x, y, and z are stored

Ø If x ≠ y ≠ z and physical conflict =>
false conflict

q  Abstract locks
q  Abstract locks are acquired on objects in the write-set when an

open-nested transaction commits
q  Read-set is immediately released
q  Abstract serialization is broken if readers do not check the

abstract lock before accessing an object

Transaction 1:
Atomic {
 s.insert(x);
 s.insert(y);
}

Transaction 2:
Atomic {
 s.insert(z);
}

Shared set s;

	

	

	

	

	

	

	

	

	

Open nesting with abstract locks
reduces false conflicts

Transaction 1:
Atomic {
 BeginNest_1

 s.insert(x);
 CommitNest_1
 BeginNest_2

 s.insert(y);
 CommitNest_2

}

Transaction 2:
Atomic {
 s.insert(z);
}

Abstract lock Abstract lock

time

a b c x y d z

q  x ≠ y ≠ z => no conflict at
abstract level

q  T1 and T2 traverse the same
structure => conflict at physical level

q  Upon CommitNest_1 (and
CommitNest_2), read-set is released
and abstract locks are acquired

q  No conflicts on a ,b, c, d,
but only on x, y

Abstract lock

	

	

	

	

	

	

	

	

	

Past research have developed several
transactional schedulers

q  Multi-core systems
q  BiModal transactional scheduler (OPODIS 09)
q  Proactive transactional scheduler (MICRO 09)
q  Adaptive transactional scheduler (SPAA 08)
q  Steal-On-Abort (HiPEAC 09)
q  CAR-STM (PODC 08)

q  Distributed systems
q  Bi-interval transactional scheduler (SSS 10)

Ø Flat nested transactions in a single copy model
q  Reactive transactional scheduler (IPDPS 12)

Ø Closed nested transactions in a single copy model
q  Cluster-based transactional scheduler (CCGrid 13)

Ø Flat nested transactions in a replication model

	

	

	

	

	

	

	

	

	

Motivation

T1

Open inner transactions accessing different shared objects commit

T2

Outer transaction aborts and
the compensation action of T2's inner transaction has to be executed,
since the modification of T2 's inner transaction has become
visible to other transactions

Outer transactions accessing a shared object

T1 successfully commits

Our goal is to minimize aborts of outer transactions with committed
inner transactions (to minimize compensations) through scheduling

T2 aborts

Ox.add(3)

Ox.add(5)

Oy.add(3)

Oz.add(5) Oz.delete(5)

T3
Oz.delete(5)

Without compensation action,
serializability is violated

	

	

	

	

	

	

	

	

	

Paper’s contribution

q  Dependency-Aware Transactional Scheduler (DATS)
q  Minimizes aborts of outer transactions
q  Uses TFA for DTM concurrency control
q  Open-nested transactions are assumed to do operations for

which inverses are well-defined
Ø E.g., add(x) is inverse of delete(x)
Ø Exists for collection classes
Ø Two operations add(x) and add(y) are commutative if executing

them in either order results in the same behavior
Ø True when x and y are distinct; otherwise not

q  Implementation and experimental studies
q  HyFlow DTM framework (hyflow.org)

M. Saad and B. Ravindran (2011). Hyflow: A high performance distributed
software transactional memory framework, HPDC, pp. 265-266

	

	

	

	

	

	

	

	

	

Atomicity, consistency, and isolation
in data-flow DTM

q  Transactional Forwarding Algorithm (TFA)
q  Early validation of remote objects (earlier validated commits first)
q  Atomicity for object operations in the presence of asynchronous

clocks

t1
LC =14

Object o1’s
owner node N0

time t2

T2’s validate request

T1, T2, and T3 request o1

T4 requests o1 and aborts

o1 is updated at
LC=30; OV=LC=30;
T2 commits & OV is
updated to 30

t3

T1 and T3’s validate request, but they abort,
because OV=30; was 14

t4 t5

(LC is local clock)

M. Saad and B. Ravindran (2011). Hyflow: A high performance distributed
software transactional memory framework, HPDC, pp. 265-266

T1’s node: N1
T2’s node: N2

T3’s node: N3

T4’s node: N4

(LC is used as
object version OV)

	

	

	

	

	

	

	

	

	

DATS: checking object level dependency

Owner of Ox

request

T1

T2

validation

T1 tries to validate first

Check commutativity: add(3)

add(5)

enqueue

If 3 ≠ 5, operations commute;
so T2 is allowed to commit

T2 tries to validate

T1

T2

T1 successfully commits Ox.add(3)

Ox.add(5)

Oy.add(3)

Oz.add(5) T2 successfully commits

Outer transactions accessing a shared object Ox

	

	

	

	

	

	

	

	

	

DATS: checking abstract-level dependency

Only T2's outer transaction restarts

Check an abstract-level dependency

Atomic{
 List ll = request (list2);
 ll. add(3) ;
 ADD(5) ; // inner tx
}

Atomic{
 List ll = request (list2);
 deleted = ll. delete(3) ;
 if (deleted) ADD(5) ; // inner tx
}

Dependent Case Independent Case

T1

T2

T1 successfully commits

Ox.add(3)

Ox.add(3)

Oy.add(3)

Oz.add(5) Ox.add(3)

Outer transactions accessing a shared object Ox

	

	

	

	

	

	

	

	

	

Implementation and experimental setup

q  Implemented DATS in HyFlow DTM framework
q  Second generation DTM framework for the JVM (Java, Scala)
q  hyflow.org

q  10 nodes
q  Each is an Intel Xeon 1.9GHz processor with 8 CPU cores

q  Benchmarks
q  Skip-list, Linked-list, Hash table, TPC-C

M. Saad and B. Ravindran (2011) . Hyflow: A high performance distributed
software transactional memory framework, HPDC, pp. 265-266
C. Minh, et al. (2008). STAMP: Stanford Transactional Applications for
Multi-Processing, IISWC , pp. 200-208

	

	

	

	

	

	

	

	

	

Scheduling overhead and abort reduction

Benchmarks Number of Nodes

% Abort transactions Execution vs. Validation Time

	

	

	

	

	

	

	

	

	

Hash table throughput (8 threads per node)

10 % Read 90 % Read

DATS

OPEN

DATS enhances throughput for open-nested transactions
over no DATS by as much as 1.7 for micro-benchmarks

	

	

	

	

	

	

	

	

	

TPC-C throughput

1 thread 4 threads 8 threads

DATS enhances throughput for open-nested transactions
over no DATS by as much as 2.2 for TPC-C

DATS

OPEN

	

	

	

	

	

	

	

	

	

Conclusions

q  DATS avoids unnecessary compensating actions through
abstract-level dependency analysis

q  DATS enhances transactional throughput for open nested
transactions over no DATS
q  By as much as 1.7 and 2.2 with micro-benchmarks and TPC-C

q  Compensations needed only if abstract-level transactional
dependencies exist
q  Can be detected through dependency analysis
q  Effective for improve concurrency of open-nested transactions

q  Future work
q  Automated transactional nesting
q  Open and closed nested transactions in control flow

